BOARD OF INTERMEDIATE EDUCATION, A.P.

Mathematics - IIA

Model Question Paper (w.e.f. 2013-14)

Note: This Question paper consists of three sections A. B and

Time: 3 Hrs Max.Marks: 75

SECTION - A

I. Very Short Answer type Questions

- (i) Answer all Questions
- (ii) Each Question carries 2 marks

 $10 \times 2 = 20$

- 1. Find the square root of -5 + 12i.
- 2. If $z_1 = -1$, $z_2 = i$ then find $Arg\left(\frac{z_1}{z_2}\right)$.
- 3. Find the value of $(1+i)^{16}$.
- 4. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
- 5. Find the algebraic equation whose roots are two times the roots of $x^5 2x^4 + 3x^3 2x^2 + 4x + 3 = 0$.
- 6. Find the number of ways of arranging the letters of the word "INTERMEDIATE".
- 7. If ${}^{n}P_{r} = 5040$ and ${}^{n}C_{r} = 210$ find n and r.
- 8. If $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ then find the value of $a_0 + a_2 + a_4 + \dots + a_{2n}$.
- 9. The variance of 20 observations is 5. If each observation is multiplied by 2, then find the new variance of the resulting observations.
- 10. A poisson variable satisfies P(x = 1) = P(x = 2) Find P(x = 5).

SECTION - B

II. Short Answer type Questions

(i) Answer any five Questions

(ii) Each Question carries 4 marks

 $5 \times 4 = 20$

- 11. If z = x + iy and if the point P in the Argand plane represents z, find the locus of z satisfying the equation |z 2 3i| = 5.
- 12. Find the range of $\frac{x+2}{2x^2+3x+6}$.

- 13. If the letters of the word MASTER are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the rank of the word "**REMAST**".
- 14. Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there will be at least 5 bowlers in the team.
- 15. Resolve $\frac{x^2-3}{(x+2)(x^2+1)}$ into partial fractions.
- 16. Two persons A and B are rolling a die on the condition that the person who gets 3 will win the game. If A starts the game, then find the probabilities of A and B respectively to win the game.
- 17. A problem in calculus is given to two students A and B whose chances of solving it are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability of the problem being solved if both of them try independently.

SECTION - C

III. Long Answer type Questions

- (i) Answer any five Questions
- (ii) Each Question carries 7 marks

 $5 \times 7 = 35$

- 18. Find all the roots of the equation $x^{11} x^7 + x^4 1 = 0$.
- 19. Solve: $x^4 10x^3 + 26x^2 10x + 1 = 0$.
- 20. If n is a positive integer and x is any nonzero real number, then prove that

$$C_0 + C_1 \frac{x}{2} + C_2 \cdot \frac{x^2}{3} + C_3 \cdot \frac{x^3}{4} + \dots + C_n \cdot \frac{x^n}{n+1} = \frac{(1+x)^{n+1}-1}{(n+1)x}$$

- 21. If $x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots$ then prove that $9x^2 + 24x = 11$.
- 22. Calculate the variance and standard deviation for the following distribution:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

- 23. The probabilities of three events A, B, C are such that P(A) = 0.3, P(B) = 0.4, P(C) = 0.8, $P(A \cap B) = 0.08$, $P(A \cap C) = 0.28$, $P(A \cap B \cap C) = 0.09$, and $P(A \cup B \cup C) \ge 0.75$, show that $P(B \cap C)$ lies in the interval [0.23, 0.48].
- 24. A random variable x has the following probability distribution:

$X = x_i$	0	1	2	3	4	5	6	7
$P(X = x_i)$	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

Find (i) k (ii) the mean (iii) P(0 < X < 5).