Total No. of Printed Pages-12

HS/XII/Sc/Ph/14

2014

PHYSICS

Full Marks: 70

Time : 3 hours

The figures in the margin indicate full marks for the questions General Instructions :

- (i) All questions are compulsory.
- (ii) All the answers are to be written in the Answer Script.
- (iii) Write the answers of a particular Group in one place.
- (iv) Marks allotted for each question are indicated against it.
- (v) There is no overall choice. However, internal choices have been provided in two questions in Group—C, two questions in Group—D and one question in Group—E.
- (vi) Use of non-programmable scientific calculator and/or logarithmic tables is allowed.
- (vii) Use of Mobile Phones, Pagers and such other electronic gadgets is not allowed in the Examination Hall.

/45

(2)

(viii) The following values of physical constants are to be used wherever necessary : Speed of light in vacuum, $c = 3 \ 10^8 \text{ m s}^{-1}$ Planck's constant, $h = 6 \ 63 \ 10^{-34} \text{ J s}$ Permittivity of free space, $_0$ $8 \ 854 \ 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ Permeability of free space, $_0 = 4 \ 10^{-7} \text{ T m A}^{-1}$ Mass of electron, $m_e = 9 \ 11 \ 10^{-31} \text{ kg}$ Mass of proton, $m_p = 1 \ 67 \ 10^{-27} \text{ kg}$ Electronic charge, $e = 1 \ 6 \ 10^{-19} \text{ C}$

GROUP—A

(Multiple choice type questions)

Choose and write the correct answer for the following : $${}^{1\!\!/}_{2}{\times}8{=}4$$

- **1.** A glass rod rubbed with a silk cloth acquires a charge of +19.2 10 18 C, then
 - (a) number of protons gained by the glass rod is 120
 - (b) number of electrons lost by the glass rod is 12
 - (c) number of electrons lost by the glass rod is 120
 - (d) number of electrons gained by the silk cloth is 120

- **2.** The horizontal component of earth's magnetic field at a place is $\sqrt{3}$ times the vertical component. The value
 - of the dip at this place is
 - (a) 60°
 - *(b)* 90°
 - *(c)* 0°
 - (d) 30°
 - **3.** An electron has the same linear momentum as that of a proton. Which of the following is correct?
 - *(a)* Kinetic energy of a proton = Kinetic energy of an electron
 - *(b)* Kinetic energy of a proton Kinetic energy of an electron
 - *(c)* Kinetic energy of a proton < Kinetic energy of an electron
 - *(d)* Kinetic energy is independent of linear momentum
 - **4.** In an a.c. circuit, an alternating voltage $e \quad 200\sqrt{2} \sin 100 t$ volts is connected to a capacitor of capacitance 1 F. The r.m.s. value of current in the circuit is
 - (a) 200 mA
 - (b) 20 mA
 - *(c)* 10 mA
 - (d) 100 mA

HS/XII/Sc/Ph/14**/45**

(3)

- (4)
- **5.** Monochromatic light of wavelength 4500 Å is incident on a clean metal surface of work function $2 \cdot 3$ eV. The maximum kinetic energy of ejected photoelectrons is 0.5 eV, then energy of the incident photon is
 - (a) 1.8 eV
 - (b) 2.8 eV
 - (c) 11.5 eV
 - (d) 12.8 eV
- **6.** A long magnetic needle of length 2L, magnetic moment M and pole strength m units is broken into two at the midpoint. The magnetic moment and pole strength of each piece will be

(a)
$$\frac{M}{2}, \frac{m}{2}$$

(b) $M, \frac{m}{2}$
(c) $\frac{M}{2}, m$
(d) M, m

- 7. In an a.c. generator
 - (a) mechanical energy is converted to electrical energy
 - (b) electrical energy is converted into mechanical energy
 - (c) electrical energy is converted into heat energy
 - (d) None of the above

8. Which graph best represents the variation of electric field intensity as a function of distance from the centre of a uniformly charged spherical shell of radius *R*?

(Very short answer type questions)

Answer the following questions in *one* sentence/step each : $1 \times 8 = 8$

9. The specific resistances of copper, silver and constantan are 1.78 10⁶ -cm, 1 10⁶ -cm and 48 10⁶ -cm respectively. Which is the best conductor and why?

(6)

- **10.** Power of 60 W is being supplied to an electrical appliance under a potential difference of 240 volts. What is the current flowing through the appliance?
- **11.** Find the magnifying power of an astronomical telescope for normal adjustment if the focal lengths of its objective and eyepiece are 50 cm and 10 cm respectively.
- **12.** Why is modulation essential for long distance transmission of signal?
- 13. What is dark current?
- **14.** Mention two essential functions of a detector circuit during the process of demodulation.
- **15.** What is total internal reflection?
- **16.** Draw a block diagram of a detector for an amplitude-modulated signal.

(7)

GROUP-C

(Short answer type-I questions)

Answer the following questions within 30 words each : $2 \times 8 = 16$

17. State Biot-Savart law and express the law in vector form.

18. Either

A parallel plate capacitor is made of two foils, each of surface area 2 m^2 , separated by paper 7 10 ⁵ m thick. What is its capacitance? [K 3.5 for paper] 2

Or

An electric dipole consists of two opposite charges of magnitude 1 C each, separated by a distance of 3 cm. The dipole is placed in a uniform electric field of 4 10^5 N/C. Find the maximum torque on the dipole.

- 19. State Lenz's law and show that it is a consequence of the principle of conservation of energy.2
- 20. When a direct current of 5 A is passed through a coil of 1000 turns, the magnetic flux produced is 1.4 10⁴ Wb. What is the inductance of the coil?

2

(8)

21.

Either

Show that the volume of a nucleus is directly proportional to its mass number.

Or

A radioactive isotope decays in the following sequence :

A A_1 A_2

If the mass number and atomic number of A_2 are 176 and 71 respectively, find the mass number and atomic number of A_1 and A. Which of the three elements are isobars?

- **22.** Draw the logic gate symbols and the truth tables for an AND gate and a NOR gate with two inputs. 1+1=2
- **23.** What is modulation factor? Calculate the modulation factor when signal amplitude is half of the carrier amplitude. 1+1=2
- **24.** Draw a labelled circuit diagram of a common-emitter transistor amplifier.

2

2

(9)

GROUP-D

(Short answer type-II questions)

Answer the following questions within 30 to 40 words each : 3×9=27

- 25. With the help of a neat diagram, deduce the condition for balance in a Wheatstone's bridge by applying Kirchhoff's laws.
- **26.** (a) Using the expressions for drift velocity (V_d) and current (I), show that $R = \frac{ml}{nAe^2}$, where the symbols have their usual meanings.
 - (b) The resistance and tolerance of a carbon resistor is given as R = 48 k 5%. Write down the sequence of colours on the resistor. 2+1=3

27.

Either

Write down the condition of resonance in a series L-C-R circuit and hence find an expression for the resonant frequency. Also draw the resonance curve in L-C-R circuit. 2+1=3

Or

What is the principle on which a transformer is based? With a simple diagram, briefly describe the working of a transformer. 1+2=3

(10)

28. Write any four properties of electromagnetic waves. Give two uses of microwaves. 2+1=3

29.

Either

Find an expression for the combined focal length of two thin coaxial convex lenses placed in contact. 3

Or

Draw a labelled diagram to show the image formation at the near point due to a compound microscope and hence calculate its magnifying power. 1+2=3

- **30.** Deduce the expression for de Broglie wavelength of an electron accelerated through a potential difference of V volts. Hence find the de Broglie wavelength in Å associated with an electron accelerated under a potential difference of 100 volts.
- 3

3

31. Define half-life of a radioactive substance. Show that half-life of a radioactive substance is inversely proportional to the decay constant.

- (11)
- **32.** Write down the postulates of Bohr's theory of hydrogen atom.
- **33.** (a) What is intrinsic semiconductor? Name the type of extrinsic semiconductor obtained when germanium is doped with (i) arsenic and (ii) gallium.
 - (b) Draw a neat diagram for a full-wave rectifier circuit. 1+1+1=3

GROUP-E

(Long answer type questions)

Answer the following questions in 70 to 80 words each : $5 \times 3 = 15$

- **34.** Two point charges q and q separated by a short distance 2a are placed in free space at points A and B respectively. Derive an expression for the electric potential at a point P whose distance from the centre O of the line AB is r and OP makes an angle with the electric dipole moment \vec{p} . Hence, find the potential if P lies on (*i*) axial line and (*ii*) equatorial line. 4+1=5
- **35.** State the Ampere's circuital law. Use the law to find the magnitude of the magnetic field inside a long, straight, air-cored solenoid. Also write the expressions for the magnitude of magnetic field *(i)* at points near the ends of the solenoid and *(ii)* inside the solenoid when it is iron-cored. 1+3+1=5

HS/XII/Sc/Ph/14/45

3

(12)

36.

Either

State and prove Brewster's law and hence show that if ray of light is incident on the refracting surface at a polarising angle, then the reflected and refracted rays are perpendicular to each other.

Or

What are coherent sources? In Young's double-slit experiment, show that the fringe width for interference fringes is given by

$\frac{D}{d}$

where *D* is the distance of the screen from the slits, *d* is the distance between two slits and is the wavelength of light used. 1+4=5

* * *

HS/XII/Sc/Ph/14

5

14K—5280**/45**