Total No. of Printed Pages-11

HS/XII/A. Sc/S/14

2014

STATISTICS

Full Marks : 100 *Time* : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

(i) Write all the answers in the Answer Script.

(ii) Attempt Part-A Objective Questions serially.

(iii) Attempt all parts of a question together at one place.

(PART : A—OBJECTIVE) (Marks : 50) SECTION—I (Marks : 20)

1. Choose and write the correct answer : 1×10=10

(a) If
$$E(X) = \frac{3}{2}$$
, then the value of $2E(X = 1)$ is
(i) 6
(ii) 5
(iii) 12
(iv) 5

/43

- (2)
- *(b)* Find out the odd man out in the following properties of expectations :
 - (i) $E(aX) \quad aE(X)$
 - (ii) $E(aX) \quad XE(a)$
 - (iii) E(a) a
 - (iv) $E(aX \ bY) \ aE(X) \ bE(Y)$
- (c) If $n \ 32$ and $p \ q \ \frac{1}{2}$, then standard of deviation of binomial distribution is
 - (*i*) $2\sqrt{2}$
 - *(ii)* 2
 - *(iii)* 4
 - *(iv)* 36

(d) The standard deviation of the Poisson distribution $P(r) = \frac{r_e}{r!}$ is

- (i) r
- (ii) r
- *(iii)* √
- *(iv)* None of the above

- (e) Normal distribution is
 - (i) uniparametric
 - (ii) biparametric
 - (iii) triparametric
 - (iv) None of the above
- (f) For a normal distribution mean = 50, median= 52, whether the data are

(3)

- (i) consistent
- (ii) inconsistent
- (iii) neither consistent nor inconsistent
- (iv) None of the above

(g) The index number $\frac{p_1q_0}{p_0q_0}$ 100 is given by

- (i) Laspeyres' formula
- (ii) Fisher's formula
- (iii) Paasche's formula
- (iv) Edgeworth-Marshall formula

(4)

- (*h*) The term 'statistic' is used to denote the characteristic of the
 - (i) population
 - (ii) sample data
 - (iii) size of population
 - *(iv)* None of the above
- (i) In sampling distribution, a finite population of N units, samples of size n can be selected as
 - (i) ${}^{N}c_{n}$
 - (ii) N^n
 - (iii) N n
 - (iv) None of the above
- (j) The bias which has its origin in sampling only is
 - (i) bias due to substitution
 - (ii) response bias
 - (iii) observational bias
 - (iv) None of the above

- (5)
- **2.** Fill the blanks : $\frac{1}{2} \times 10=5$
 - (a) If X 4, then E(X) = ----.
 - (b) Binomial distribution is symmetrical if $p \quad q \quad ---$.
 - (c) Time series consists of components.
 - (d) The standard normal distribution is denoted by ——.
 - *(e)* index number satisfies both the time and factor reversal tests.
 - (f) In a simple random sampling is an unbiased estimate of population mean.
 - *(g)* The maximum height of the normal curve lies at the point ——.
 - (h) For a binomial distribution given by b(x; 10, 0, 4), the mean is —.

(6)

(i) A continuous random variable can take — value in its interval.

(j) Time reversal test is satisfied if I_{on} I_{no} —.

- **3.** Write whether the following statements are *True* or *False* : $\frac{1}{2} \times 10=5$
 - (a) $E(X^2) = E(X) = E(X)$.
 - (b) A binomial distribution is non-parametric.
 - (c) Binomial distribution is unimodal if *np* is a whole number and the mean and mode are equal, each being *np*.
 - (d) Sampling involves lower cost than complete enumeration.
 - *(e)* Census enumeration results are less accurate and reliable.
 - (f) Secular trend is attached to short-term fluctuations.

- (7)
- (g) In SRSWR, the same sampling unit may be included in the sample more than once.
- (h) Index number always involves two periods.
- *(i)* Marshall-Edgeworth index number does not satisfy time reversal test.
- (j) Increase in population in India represents the secular trend.

SECTION—II (Marks: 30)

- **4.** Answer the following questions : $3 \times 10=30$
 - (a) In tossing two coins, let X be the number of heads shown. Find E(X) and $E(X = 1)^2$.
 - (b) If x and y are independent random variables, show that

 $E[\{x \ E(x)\}\{y \ E(y)\}] = 0$

(c) A die is rolled three times. What is the probability of 5 coming up at least once?

(8)

- (d) Why are index numbers called economic barometers of a country?
- *(e)* What are the problems in the construction of index number?
- (f) Explain briefly, how Fisher's ideal index number is constructed. Justify its being called 'ideal'.
- (g) Name the components of a time series.
- (h) What do you understand by 'seasonal variation' in the time series data?
- (i) What are sampling and non-sampling errors?
- (j) Mention the three methods of sampling.

(9)

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

Answer \mathbf{four} questions, taking at least \mathbf{one} from each Group

GROUP—A

5.	(a)	Define expectation of a random variable X . State the theorems on the expectation of sum and product of two variables. $2+2+$	2=6
	(b)	Show that the mean and variance are identical in Poisson distribution.	4
	(c)	Find the expected value of the number X shown on the face when a die is thrown.	2½
6.	(a)	State the distinctive features of the binomial, Poisson and normal probability distributions. When does a binomial or a Poisson distribution tend to a normal distribution?	6½
	(b)	Find the mean of binomial distribution.	3
	(c)	The mean of a binomial distribution is 4 and its standard deviation $\sqrt{3}$. What are the values of <i>n</i> , <i>p</i> and <i>q</i> with usual notation?	3

(10)

GROUP-B

7. (a) An enquiry into the budgets of the middle class families of a certain city revealed that on an average the percentage expenses on the different groups were :

Food—45, Rent—15, Clothing—12, Fuel and light—8, Miscellaneous—20

The group index numbers for the current year as compared with a fixed base period were respectively 410, 150, 343, 248 and 285. Calculate the cost of living index number for the current year.

- (b) Prove that the time reversal test is satisfied by the Marshall-Edgeworth index number.
- (c) What is time series? Describe the uses of time series. How will you analyze the time series? $2+2+2\frac{1}{2}=6\frac{1}{2}$
- **8.** (*a*) Name four methods by which one can compute a seasonal index from time series data.
 - (b) Calculate the Laspeyres' and Paasche's index numbers from the following data and comment on the relative merits of the two :

Commodity	Base Year		Current Year	
	Quantity	Price	Quantity	Price
A	10	0.80	11	0.70
B	8	0.82	9	0.90
С	5	1.30	5.2	0.80

HS/XII/A. Sc/S/14**/43**

3

3

6

 $6^{1/2}$

(11)

GROUP-C

- **9.** (a) Explain the two terms 'parameter' and 'statistic' as used in sampling theory. 3+3=6
 - (b) Define 'simple random sampling' and 'stratified random sampling'. What are random numbers and how can you use them? $2+2+2\frac{1}{2}=6\frac{1}{2}$
- **10.** (a) Write a note on the difference between Census and Sample survey.
 - (b) Explain the concept of standard error. Discuss the role of standard error in large sample theory. $3+3\frac{1}{2}=6\frac{1}{2}$

14K-250/43