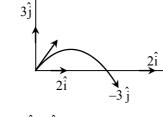
NEET EXAMINATION 2013


Q.1 In an experiment four quantities a, b, c and d are measured with percentage error 1%, 2%, 3% and 4% respectively. Quantity P is calculated as follows : $P = \frac{a^3b^2}{cd}$. % error in P is - (1) 14% (2) 10% (3) 7% (4) 4%

Ans. [1]

Sol. Students find this question in CP Class Notes : [Topic : Errors & Measurement]


 $P = \frac{a^3b^2}{cd}$ Error in $\left(\frac{\Delta P}{P}\right) = 3\left(\frac{\Delta a}{a}\right) + 2\left(\frac{\Delta b}{b}\right) + \left(\frac{\Delta c}{c}\right) + \left(\frac{\Delta d}{d}\right)$ = 3(1%) + 2(2%) + 3% + 4% = 14%

Q.2 The velocity of a projectile at the initial point A is $(2\hat{i} + 3\hat{j})$ m/s. It's velocity (in m/s) at point B is -

Ans. [3]

Sol. Students find this question in CP Class Notes : [Topic : Projectile Motion]

So,
$$v_f = 2i - 3$$

Q.3 A stone falls freely under gravity. It covers distances h_1 , h_2 and h_3 in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h_1 , h_2 and h_3 is -

(1)
$$h_1 = 2h_2 = 3h_3$$

(2) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$
(3) $h_2 = 3h_1$ and $h_3 = 3h_2$
(4) $h_1 = h_2 = h_3$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

1 / 51

CAREER POINT

Þ

NEET EXAMINATION 2013

Þ

Ans. [2]

Sol.

Students find similar question in CP Sheet at : Ex. 1, Q.28 (One dimensional motion). Distance covered in first 5 sec.

$$h_{1} = 0 + \frac{1}{2} a(5)^{2}$$

$$h_{1} = \frac{25a}{2} \qquad \dots (1)$$

distance covered in first 10 sec

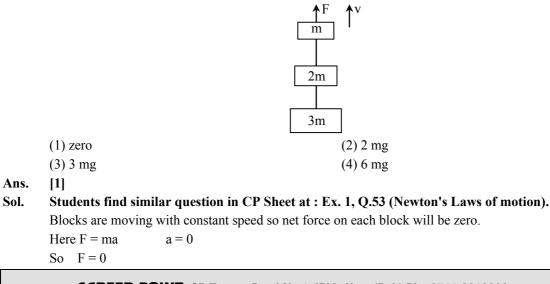
$$S_2 = 0 + \frac{1}{2}a(10)^2 = \frac{100a}{2}$$

So distance covered in second 5 sec.

$$h_2 = S_2 - h_1 = \frac{100a}{2} - \frac{25a}{2} = \frac{75a}{2}$$
 ...(2)

distance covered in first 15 sec.

$$S_3 = 0 + \frac{1}{2}a(15)^2 = \frac{225a}{2}$$


so distance covered in last 5 sec.

$$h_3 = S_3 - S_2 = \frac{225a}{2} - \frac{100a}{2} = \frac{125a}{2}$$
 ...(3)

using (1), (2) and (3) equation.

$$\frac{\frac{h_1}{25a}}{2} = \frac{\frac{h_2}{75a}}{2} = \frac{\frac{h_3}{125a}}{2}$$
$$h_1 = \frac{h_2}{3} = \frac{h_3}{5}$$

Q.4 Three blocks with masses m, 2m and 3m are connected by strings, as shown in the figure. After an upward force F is applied on block m, the masses move upward at constant speed v. What is the net force on the block of mass 2m ? (g is the acceleration due to gravity)

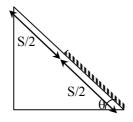
CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CODE-W

NEET EXAMINATION 2013

CAREER POINT

P


Q.5 The upper half of an inclined plane of inclination θ is perfectly smooth while lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom, if the coefficient of friction between the block and lower half of the plane is given by -

(1)
$$\mu = \frac{1}{\tan \theta}$$
 (2) $\mu = \frac{2}{\tan \theta}$
(3) $\mu = 2 \tan \theta$ (4) $\mu = \tan \theta$

Ans.

[3]

Students may find this question in CP Sheet at : similar Q.8, Ex. 3B, Page. 56 (Laws of motion) Sol. Gain of kinetic energy = loss of KE due to friction in lower half.

mg sin θ S = μ mg cos θ S/2 $\mu = 2 \tan \theta$

A uniform force of $(3\hat{i} + \hat{j})$ newton acts on a particle of mass 2 kg. Hence the particle is displaced from Q.6 position $(2\hat{i} + \hat{k})$ meter to position $(4\hat{i} + 3\hat{j} - \hat{k})$ meter. The work done by the force on the particle is -

(1) 9 J	(2) 6 J
(3) 13 J	(4) 15 J

Ans. [1]

Students may find this question in CP Sheet at : similar Q.4, Ex. 1, Page. 90 (Work, Power & Energy) Sol. Displacement = $\vec{r}_2 - \vec{r}_1 = (4\hat{i} + 3\hat{j} - \hat{k}) - (2\hat{i} + \hat{k})$

 $= 2\hat{i} + 3\hat{j} - 2\hat{k}$

Force $\vec{F} = 3\hat{i} + \hat{j}$

Work W = $\vec{F}.\vec{d} = (3\hat{i} + \hat{j}).(2\hat{i} + 3\hat{j} - 2\hat{k})$

= 6 + 3 = 9J

An explosion breaks a rock into three parts in a horizontal plane. Two of them go off at right angles to each **Q.7** other. The first part of mass 1 kg moves with a speed of 12 ms⁻¹ and the second part of mass 2 kg moves with 8 ms^{-1} speed. If the third part files off with 4 ms^{-1} speed, then its mass is -

(1) 3 kg	(2) 5 kg
(3) 7 kg	(4) 17 kg

(3) 7 kg

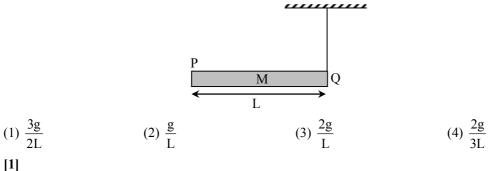
Ans.

[2]

Students may find this question in CP Sheet at : similar Q.31, Ex. 3A, Page. 101 (Work, Power & Sol. Energy)

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

NEET EXAMINATION 2013


CAREER POINT

Þ

Using law of conservation of linear momentum

$$\begin{split} P_1 + P_2 + P_3 &= 0 \\ m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 &= 0 \\ |m_3 \vec{v}_3| &= |-(m_1 \vec{v}_1 + m_2 \vec{v}_2)| & \vec{v}_1 \perp \vec{v}_2 \\ m_3 v_3 &= \sqrt{m_1^2 v_1^2 + m_2^2 v_2^2} \\ m_3 4 &= \sqrt{1^2 \times 12^2 + 2^2 \times 8^2} \\ m_3 4 &= 20 \\ m_3 &= \frac{20}{4} = 5 \text{kg} \end{split}$$

Q.8 A rod PQ of mass M and length L is hinged at end P. The rod is kept horizontal by a massless string tied to point Q as shown in figure. When string is cut, the initial angular acceleration of the rod is -

Ans.

Sol. Students may find this question in CP Sheet at : similar Q.24, Ex. 3A, Page. 160 (Rotational Motion) $\tau = I\alpha$

$$\frac{L}{2}Mg = \frac{ML^2}{3}\alpha$$
$$\alpha = \frac{3g}{2L}$$

Q.9 A small object of uniform density rolls up a curved surface with an initially velocity 'v'. It reaches up to a maximum height of $\frac{3v^2}{4g}$ with respect to the initial position. The object is -

(1) Ring	(2) Solid sphere
(3) Hollow sphere	(4) Disc

Ans. [4]

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

NEET EXAMINATION 2013

CAREER POINT

P

Sol. Students may find this question in CP Sheet at : similar Q.32, Ex. 2, Page. 154 (Work, Power & **Energy**) Using mechanical energy conservation

$$\frac{1}{2}mv^{2}\left(1+\frac{k^{2}}{R^{2}}\right) = mg\left(\frac{3v^{2}}{4g}\right)$$
$$1+\frac{k^{2}}{R^{2}} = \frac{3}{2}$$
$$\frac{k^{2}}{R^{2}} = \frac{1}{2}$$

So, body is disc or solid cylinder.

Q.10 A body of mass 'm' is taken from the earth's surface to the height equal to twice the radius (R) of the earth. The change in potential energy of body will be -

(1) mg 2R	(2) $\frac{2}{3}$ mgR
(3) 3 mgR	(4) $\frac{1}{3}$ mgR

Ans. [2]

Sol. Students find similar question in CP Sheet at : Ex. 2A, Q.9 (Gravitation).

$$\Delta U = \frac{\text{mgh}}{1 + \frac{h}{R}} = \frac{\text{mg2R}}{1 + 2} = \frac{2}{3} \text{mgR}$$
$$h = 2R$$

Q.11 Infinite number of bodies, each of mass 2 kg are situated on x-axis at distances 1m, 2m, 4m, 8m, ..., respectively, from the origin. The resulting gravitational potential due to this system at the origin will be -

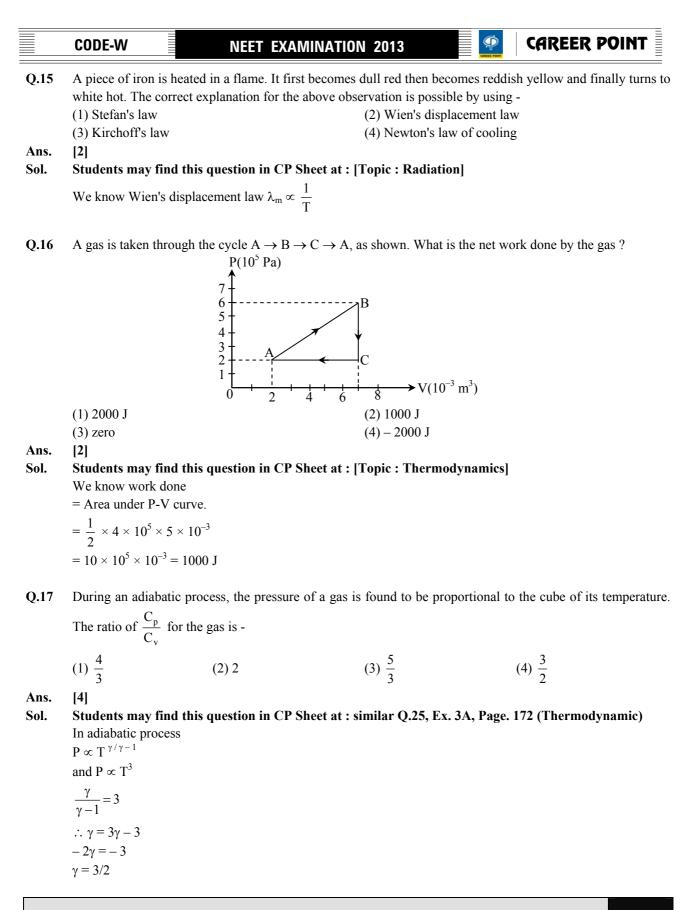
(1) -G (2) -
$$\frac{8}{3}$$
G (3) - $\frac{4}{3}$ G (4) -4G

Ans. [4]

Sol. Students may find this question in CP Sheet at : [Topic : Gravitation]

$$2kg \quad 2kg \quad 2kg \quad 2kg \quad 2kg$$

$$x = 0 \quad 1m \quad 2m \quad 4m \quad 8m...\infty$$


$$V_{g} = -\frac{G(2)}{1} - \frac{G(2)}{2} - \frac{G(2)}{4} - \frac{G(2)}{8} \dots \infty$$

$$V_{g} = -2G \left[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \infty \right]$$

$$= -2G \left[\frac{1}{1 - \frac{1}{2}} \right] = -2G(2) = -4G$$

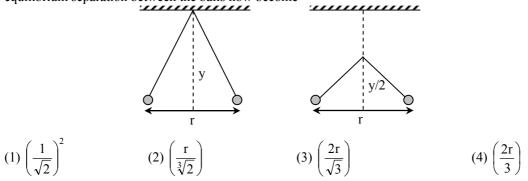
CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	ET EXAMINATIO	N 2013	CAREER POINT
Q.12	-	ide of the same mate	erial. Which of these wil	l have the largest extension when
	the same tension is applied ?	_		
	(1) length = 50 cm, diameter = ((2) length = 100 cm , di	
• •• •	(3) length = 200 cm , diameter =	2 mm	(4) length = 300 cm , di	ameter = 3 mm
Ans. Sol.	[1] Students may find this questio	n in CP Shoot at · a	imilar 0.0 CP Study r	natarial Shaat (Flasticity)
501.	•	II III CF Sheet at : s	sinnar Q.9, Cr Study I	naterial Sheet (Elasticity)
	$Y = \frac{MgL}{\Delta L.A}$			
	$\Delta L = \frac{mgL}{Y.A}$			
	$\Delta L \propto \frac{L}{\Delta}$			
	A			
Q.13	The wettability of a surface by a	liquid depends prin	narily on -	
	(1) viscosity			
	(2) surface tension			
	(3) density			
	(4) angle of contact between the	surface and the liqu	id	
Ans.	[4]			
Sol.		ion in CP Sheet a	it : Page no. 195, The	eory Notes CP Study material
	(Surface Tension) The wettability of a surface by a	liquid depends on a	ngle of contact between	the surface and the liquid
	The wettability of a surface by a	inquia depends on a	ligit of contact between	the surface and the riquid.
Q.14	The molar specific heats of a	n ideal gas at cons	stant pressure and volu	me are denoted by C_p and C_v ,
	respectively. If $\gamma = \frac{C_p}{C_v}$ and R is	the universal gas co	onstant, then C_v is equal	to -
	(1) $\frac{1+\gamma}{1-\gamma}$ (2) $\frac{\gamma}{\gamma}$	R -1)	$(3) \ \frac{(\gamma-1)}{R}$	(4) γR
Ans.	[2]			
Sol.	Students may find this question	n in CP Sheet at : s	imilar Q.9, Ex. 3A (Ca	lorimatry)
	$C_p - C_v = R$			
	$\Rightarrow \frac{C_p}{C_v} - \frac{C_v}{C_v} = \frac{R}{C_v}$			
	$\gamma - 1 = \frac{R}{C_{\gamma}}$			
	•			
	$\therefore C_{\rm v} = \frac{\rm R}{\gamma - 1}$			

Þ **CODE-W NEET EXAMINATION 2013 CAREER POIN** In the given (V - T) diagram, what is the relation between pressures P_1 and P_2 ? Q.18 δη. ≻T (1) $P_2 = P_1$ (2) $P_2 > P_1$ (3) $P_2 < P_1$ (4) cannot be predicted Ans. [3] Sol. Students may find this question in CP Sheet at : similar Q.32, Ex. 2, Page. 133 (K.T.G) Ideal gas equation PV = nRTand $\frac{V}{T} \propto \frac{1}{P}$ by equation and by graph $\frac{V}{T} = \tan \theta$ $\therefore \frac{1}{P} \propto \tan \theta$ $\theta\uparrow$, tan $\theta\uparrow$, P \downarrow $\therefore P_1 > P_2$ The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from $T_1 K$ to $T_2 K$ is -Q.19 (1) $\frac{3}{8}N_{a}k_{B}(T_{2}-T_{1})$ (2) $\frac{3}{2}$ N_ak_B (T₂ - T₁) (4) $\frac{3}{4}$ N_ak_B $\left(\frac{T_2}{T_1}\right)$ (3) $\frac{3}{4}$ N_ak_B (T₂ - T₁) Ans. [1]

Sol. Students may find this question in CP Sheet at :

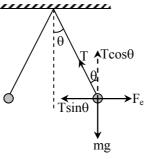
$$E = \frac{1}{2} nRT OR$$
$$= \frac{f}{2} NkT$$
$$\therefore N = n.N_A$$
$$= \frac{3}{2}.n.N_A.k_B.T$$
$$= \frac{3}{8}N_A.k_B.T$$
$$n = \frac{m}{M} = \frac{1}{4}$$


where $N_A = Avagadro's$ number $k_{\rm B}$ = Boltzmann const.

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P **CAREER POINT CODE-W NEET EXAMINATION 2013** A wave travelling in the +ve x-direction having displacement along y-direction as 1m, wavelength $2\pi m$ and Q.20 frequency of $\frac{1}{\pi}$ Hz is represented by -(1) y = sin (x - 2t)(2) $y = \sin(2\pi x - 2\pi t)$ (3) $y = \sin(10\pi x - 20\pi t)$ (4) $y = \sin(2\pi x + 2\pi t)$ Ans. [1] Sol. Students may find this question in CP Sheet at : similar Q.29, Ex. 3A, Page. 54 (Wave) $y = a \sin(\omega t - kx)$ OR $y = a \sin(kx - \omega t)$...(1) \therefore y = sin [x - 2t] $k = \frac{2\pi}{\lambda} = \frac{2\pi}{2\pi}$ $\omega = 2\pi . \nu = 2\pi . \frac{1}{\pi} = 2$ a = 1mQ.21 It we study the vibration of a pipe open at both ends, then the following statement is not true -(1) Open end will be antinode (2) Odd harmonics of the fundamental frequency will be generated (3) All harmonics of the fundamental frequency will be generated (4) Pressure change will be maximum at both ends Ans. [4] Sol. Students may find this question in CP Sheet at : [Topic : Waves] When pipe is open at both ends then ratio of frequency (i) v : 2v : 3v : 4v : 5vwhere $v = \frac{v}{2L}$ odd and even both harmonics will present So, option (1), (2) and (3) are correct. : pressure variation is minimum at antinode \therefore (4) is wrong option. Q.22 A source of unknown frequency gives 4 beats/s, when sounded with a source of known frequency 250 Hz. The second harmonic of the source of unknown frequency gives five beats per second, when sounded with a source of frequency 513 Hz. The unknown frequency is -(1) 254 Hz (2) 246 Hz (3) 240 Hz (4) 260 Hz CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 9 / 51 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CODE-WNEET EXAMINATION 2013 \bigcirc CAREER POINTAns. [1]Sol. Students may find this question in CP Sheet at : similar Q.26, Ex. 2, Page. 50 (Wave) $v' = 250 \pm 4 = 254$ OR 246v'' = 2. v' and $v'' = 513 \pm 5 = 518$ OR 508So, 508 = 2.(254)OR v'' = 2.(v')Answer is (254 Hz).


Q.23 Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is r. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become -

Ans.

[2]

Sol. Students may find this question in CP Sheet at : Similar to Ex.2, Q.13. (Electrostatics)

At balance $T \cos \theta = mg$

$$T \sin \theta = F_e = \frac{Kq^2}{r^2}$$

$$\tan \theta = \frac{Kq^2}{r^2mg} = \frac{r/2}{y}$$

$$y = \frac{mgr^3}{2kq^2} \qquad \dots (1)$$

$$y \propto r^3$$

$$r \propto y^{1/3}$$

$$r' \propto (y/2)^{1/3} \propto \frac{r}{2^{1/3}}$$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	NEET EX	AMINATION 2013	🧐 🛛 CAREER POINT
Q.24	A, B and C are t	hree points in a uniform	n electric field. The electric po	tential is -
			• A	
			В	
			• \tilde{E}	
			• C →	
	(1) maximum at	Α	(2) maximum at	В
	(3) maximum at	C	(4) same at all the	he three points A, B and C
Ans.	[2]		D Sh	
Sol.	•	from high potential to l	P Sheet at : Q.64, Ex 3B (Elec	ctrostatics).
	So, potential is n		ow potential.	
Q.25	A wire of resista	nce 40 is stretched to	twice its original length. The re	esistance of stretched wire would be -
2.20	(1) 2Ω	$(2) 4\Omega$	$(3) 8\Omega$	$(4) 16\Omega$
Ans.	[4]		(-) -	
Sol.		nd similar question in	n CP Sheet at : Q.7, Ex. 2 (El	ectrostatics).
	At constant volu	me		
	$R \propto \ell^2$			
	\Rightarrow R' = 4R = 169	.2		
Q.26	The internal resi	stance of a 2.1 V cell w	which gives a current of 0.2A th	nrough a resistance of 10Ω is -
	(1) 0.2Ω	(2) 0.5Ω	(3) 0.8Ω	(4) 1.0Ω
Ans.	[2]			
Sol.	Students may fi	ind this question in Cl	P Class Notes : [Topic : Curr	ent Electricity]
	$I = \frac{E}{R+r}$			
	$0.2 = \frac{2.1}{10 + r}$			
	2 + 0.2 r = 2.1			
	0.2 r = 2.1			
	$r = 0.5\Omega$			
Q.27	The resistances of	of the four arms P, Q, J	R and S in a Wheatstone's brid	lge are 10 ohm, 30 ohm, 30 ohm and 90
	ohm, respectively	ly. The e.m.f. and inte	ernal resistance of the cell are	e 7 volt and 5 ohm respectively. If the
	-		current drawn from the cell wi	
	(1) 1.0 A	(2) 0.2 A	(3) 0.1 A	(4) 2.0 A
Ans.	[2]			

NEET EXAMINATION 2013

CAREER POINT

Þ

 $\therefore \frac{P}{O} = \frac{P}{S} \Rightarrow Balanced bridge$

Equivalent resistance of bridge

$$= \frac{40 \times 120}{40 + 120} = 30 \ \Omega$$

: $I_{\text{battery}} = \frac{7}{30 + 5} = 0.2 \ \text{A}$

Q.28 When a proton is released from rest in a room, it starts with an initial acceleration a_0 towards west. When it is projected towards north with a speed v_0 it moves with an initial acceleration $3a_0$ toward west. The electric and magnetic fields in the room are -

(1)
$$\frac{\mathrm{ma}_{0}}{\mathrm{e}}$$
 west, $\frac{2\mathrm{ma}_{0}}{\mathrm{ev}_{0}}$ up
(2) $\frac{\mathrm{ma}_{0}}{\mathrm{e}}$ west, $\frac{2\mathrm{ma}_{0}}{\mathrm{ev}_{0}}$ down
(3) $\frac{\mathrm{ma}_{0}}{\mathrm{e}}$ east, $\frac{3\mathrm{ma}_{0}}{\mathrm{ev}_{0}}$ up
(4) $\frac{\mathrm{ma}_{0}}{\mathrm{e}}$ east, $\frac{3\mathrm{ma}_{0}}{\mathrm{ev}_{0}}$ down

Ans. [2]

Sol. Discussed in CP Class Notes : [Topic : Magnetic Effect of Current]

$$\vec{F}_{L} = \vec{F}_{e} + \vec{F}_{m} = q \vec{E} + q (\vec{v} \times \vec{B})$$

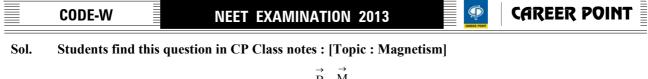
$$ma_{0} = qE + 0 \qquad \dots (1)$$

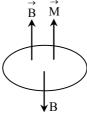
$$E = \frac{ma_{0}}{q} \text{ so } \vec{E} = \frac{ma_{0}}{e} \text{ in west}$$

$$\vec{F}_{L} = \vec{F}_{e} + \vec{F}_{m}$$

$$3 ma_{0} = qE + q (\vec{v} \times \vec{B}) \Rightarrow q (\vec{v} \times \vec{B}) = 2 ma_{0} (\text{west})$$

$$\vec{F}_{m} = q \vec{v} \times \vec{B}$$

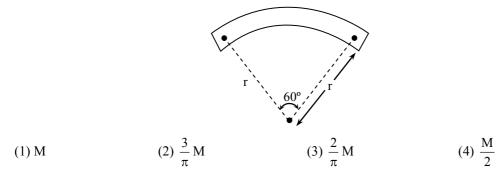

$$- \hat{i} = (+\hat{j}) \times \dots \dots$$

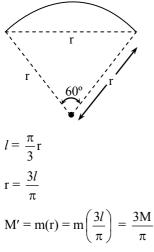

$$B = \frac{2ma_{0}}{qv} \text{ in vertically downward}$$

Q.29 A current loop in a magnetic field -

- (1) experiences a torque whether the field is uniform or non-uniform in all orientations
- (2) can be in equilibrium in one orientation
- (3) can be in equilibrium in two orientations, both the equilibrium states are unstable
- (4) can be in equilibrium in two orientations, one stable while the other is unstable
- Ans. [4]

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com



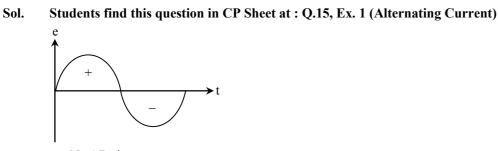

 $\theta = 0^{\circ}$ stable equilibrium

 $\theta = 180^{\circ}$ unstable equilibrium

Q.30 A bar magnet of length 'l' and magnetic dipole moment 'M' is bent in the form of an arc as shown in figure. The new magnetic dipole moment will be -

- Ans. [2]
- Sol. Students find this question in CP Sheet : Q.10, Ex. 3(B) (Magnetic field).

Q.31 A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is -(1) once per revolution (2) twice per revolution (3) four times per revolution (4) six times per revolution [2]

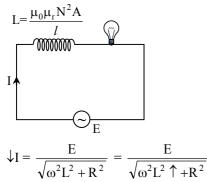

Ans.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

NEET EXAMINATION 2013

CAREER POINT

Ø



 $e = N\omega AB \sin \omega t$ direction of e.m.f. changed two times

Q.32 A coil of self-inductance L is connected in series with a bulb B and an AC source. Brightness of the bulb decreases when -

- (1) frequency of the AC source is decreased
- (2) number of turns in the coil is reduced
- (3) a capacitance of reactance $X_C = X_L$ is included in the same circuit
- (4) an iron rod is inserted in the coil
- Ans. [4]

Sol. Students find this question in CP Class notes : [Topic : Alternating Current]

 $L \propto \mu_r$

L is increased when iron rod inserted So current decreased

- Q.33 The condition under which a microwave oven heats up a food item containing water molecules most efficiently is -
 - (1) The frequency of the microwaves must match the resonant frequency of water molecules
 - (2) The frequency of the microwaves has no relation with natural frequency of water molecules
 - (3) Microwaves are heat waves, so always produce heating
 - (4) Infra-red waves produce heating in a microwave oven
- Ans.

[1]

Sol. Students find this question in CP Class notes.

In the presence of microwave water molecules oscillates the frequency of microwave and large heat is developed.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	NEET EXAMINA	ATION 2013	🧐 🛛 CAREER POINT
Q.34	Ratio of longest wave leng	gths corresponding to	Lyman and Balmer	series in hydrogen spectrum is -
	(1) $\frac{5}{27}$	(2) $\frac{3}{23}$	(3) $\frac{7}{29}$	(4) $\frac{9}{31}$
Ans.	[1]			
Sol.	Students find this questi	on in CP Class notes	s : [Topic : Atomic S	tructure]
	-		0	
	_	-	n = 4	
	Longest wavelength	I	n = 3	
	corresponding to Balmer	······································	n = 2	
	Longest wavelength corresponding to Lyman—	ı	n = 1	
	$\frac{1}{\lambda_{\ell}} = \mathrm{R(1)}^{2} \left[\frac{1}{1^{2}} - \frac{1}{2^{2}} \right] =$	$\frac{3R}{4}$		
	$\lambda_{\ell} = \frac{4}{3R}$		(1)	
	$\frac{1}{\lambda_{\rm b}} = \mathrm{R}(1)^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right] =$	5 <u>R</u> 36		

$$\frac{\lambda_{\ell}}{\lambda_{b}} = \frac{4}{3R} \times \frac{5R}{36} = \frac{5}{3 \times 9} = \frac{5}{27}$$

 $\lambda_b = \frac{36}{5R}$

Q.35 The half-life of a radioactive isotope 'X' is 20 years. It decays to another element 'Y' which is stable. The two elements 'X' and 'Y' were found to be in the ratio 1 : 7 in a sample of a given rock. The age of the rock is estimated to be -(4) 100 years

....(2)

(1) 40 years (2) 60 years (3) 80 years

Ans. [2]

Sol. Students may find similar question in CP Sheet at : Page no. 45, Q.9 (Radioactivity) Half-life of X \Rightarrow T_X = 20 years Active Stable

$$X \xrightarrow{Y}_{1} Y$$

$$\frac{N}{N_{0}} = \frac{1}{1+7} = \frac{1}{8} = \frac{1}{2^{n}} = \frac{1}{2^{3}}$$

$$n = 3 = \frac{t}{T} = \frac{t}{20}$$

$$t = 60 \text{ years}$$

Q.36 A certain mass of Hydrogen is changed to Helium by the process of fusion. The mass defect in fusion reaction is 0.02866 u. The energy liberated per u is - (Given 1 u = 931 MeV) (1) 2.67 MeV (2) 26.7 MeV (3) 6.675 MeV (4) 13.35 MeV

Ans. [3]

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P **CAREER POINT CODE-W NEET EXAMINATION 2013** Students may find similar question in CP Class notes : [Topic : Nuclear Physics] Sol. $_{1}\text{H}^{2} + _{1}\text{H}^{2} \longrightarrow _{2}\text{He}^{4}$ Mass defect = $\Delta m = 0.02866$ u Total energy = $E = \Delta mc^2 = 0.02866 \times 931 \text{ MeV}$ = 26.68 MeV Energy liberated per $u = \frac{E}{A} = \frac{26.68}{4} = 6.678 \text{ MeV}$ Q.37 For photoelectric emission from certain metal the cutoff frequency is v. If radiation of frequency 2v impinges on the metal plate, the maximum possible velocity of the emitted electron will be (m is the electron mass) -(2) $\sqrt{hv/m}$ (3) $\sqrt{2hv/m}$ (4) $2\sqrt{h\nu/m}$ (1) $\sqrt{\frac{hv}{2m}}$ Ans. [3] Students may find this question in CP Class notes : [Topic : Photoelectric Effect] Sol. Cutoff frequency = vWork function = $\phi = hv$ Use, $E = K.E. + \phi$ $2 hv = \frac{1}{2} mv^2 + hv$ $\frac{1}{2}mv^2 = 2hv - hv = hv$ $v = \sqrt{\frac{2hv}{m}}$ Q.38 The wavelength λ_e of an electron and λ_p of a photon of same energy E are related by $\ \ -$ (4) $\lambda_p \propto \frac{1}{\sqrt{\lambda_a}}$ (2) $\lambda_{\rm p} \propto \lambda_{\rm e}$ (3) $\lambda_{\rm p} \propto \sqrt{\lambda_{\rm e}}$ (1) $\lambda_p \propto \lambda_e^2$

Ans. [1]

Students may find similar question in CP Sheet at : Page no. 103, Q.21 (Matter Waves) Sol. de-Broglie wavelength for an electron

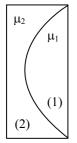
$$\lambda_{e} = \frac{h}{\sqrt{2mE}} \text{ or } \lambda_{e} \propto \frac{1}{\sqrt{E}}$$
or
$$\lambda_{e}^{2} \propto \frac{1}{E} \qquad \dots(1)$$
Wavelength of photon $\Rightarrow \lambda_{p} = \frac{hc}{E}$
or
$$\lambda_{p} \propto \frac{1}{E} \qquad \dots(2)$$
From equation (1) and (2)

F from equation (1) and (2) $\lambda_e^2 \propto \lambda_p$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

NEET EXAMINATION 2013

Q.39 A plano convex lens fits exactly into a plano concave lens. Their plane surfaces are parallel to each other. If lenses are made of different materials of refractive indices μ_1 and μ_2 and R is the radius of curvature of the curved surface of the lenses, then the focal length of the combination is -


P

CAREER POINT

(1)
$$\frac{R}{2(\mu_1 + \mu_2)}$$
 (2) $\frac{R}{2(\mu_1 - \mu_2)}$ (3) $\frac{R}{(\mu_1 - \mu_2)}$ (4) $\frac{2R}{(\mu_2 - \mu_1)}$

Ans. [3]

Students find this question in CP Class notes : [Topic : Ray Optics] Sol.

Focal length of first lens $\frac{1}{f_1} = (\mu_1 - 1) \left(\frac{1}{\infty} - \frac{1}{-R} \right) = \frac{\mu_1 - 1}{R}$

Focal length of second lens $\frac{1}{f_2} = (\mu_2 - 1) \left(\frac{1}{-R} - \frac{1}{\infty}\right) = -\frac{(\mu_2 - 1)}{R}$

So focal length of the combination

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{\mu_1 - 1}{R} - \frac{(\mu_2 - 1)}{R}$$
$$\frac{1}{f} = \frac{\mu_1 - \mu_2}{R}$$
$$f = \frac{R}{\mu_1 - \mu_2}$$

- Q.40 For a normal eye, the cornea of eye provides a converging power of 40D and the least converging power of the eye lens behind the cornea is 20D. Using this information, the distance between the retina and the corneaeye lens can be estimated to be -(1) 5 cm(2) 2.5 cm(3) 1.67 cm (4) 1.5 cm

Ans. [3] Students find this question in NCERT and in CP Class notes : [Topic : Ray Optics] Sol.

(lens + cornea) should form image of distance object at retina Converging power (40 + 20) D = 60 D

Using lens equation ()

$$\frac{1}{v} - \frac{1}{\infty} = \frac{60}{100}$$
$$v = \frac{5}{3} \text{ cm} = 1.67 \text{ cm}$$

So distance between retina and cornea should be 1.67 cm.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

Ø **CAREER POINT CODE-W NEET EXAMINATION 2013**

Q.41 In Young's double slit experiment, the slits are 2mm apart and are illuminated by photons of two wavelengths $\lambda_1 = 12000$ Å and $\lambda_2 = 10000$ Å. At what minimum distance from the common central bright fringe on the screen 2m from the slit will a bright fringe from one interference pattern coincide with a bright fringe from the other ?

 $(1) 8 \, \text{mm}$ (2) 6 mm(3) 4 mm

(4) 3 mm

Ans. [2]

Sol. Students find this question in CP Class notes : [Topic : Wave Optics]

d = 2 mm; D = 2 mFringe width for first wave length 12000 Å

$$\beta_1 = \frac{\lambda_1 D}{d} = \frac{12000 \times 10^{-10} \times 2}{2 \times 10^{-3}} = 1.2 \times 10^{-3} \text{ m} = 1.2 \text{ mm}$$

For second wave length

$$\beta_2 = \frac{\lambda_2 D}{d} = \frac{10000 \times 10^{-10} \times 2}{2 \times 10^{-3}} = 1 \text{ mm}$$

At 6 mm distance from center bright fringe 5th fringe of first coincides with 6th of second.

- **O.42** A parallel beam of fast moving electrons is incident normally on a narrow slit. A fluorescent screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statements is correct?
 - (1) Diffraction pattern is not observed on the screen in the case of electrons
 - (2) The angular width of the central maximum of the diffraction pattern will increase
 - (3) The angular width of the central maximum will decrease
 - (4) The angular width of the central maximum will be unaffected

Ans. [3]

Sol. Students may find this question in CP Class notes : [Topic : Wave Optics]

As speed of an electron increases.

Its de-Broglie wavelength decreases

$$\left\{\lambda = \frac{h}{mv}\right\}$$

and angular width for central maxima is $\omega = \frac{2\lambda}{d}$

$$\omega \propto \lambda \propto \frac{1}{v}$$

Q.43 In a n-type semiconductor, which of the following statements is true -

- (1) Electrons are majority carriers and trivalent atoms are dopants
- (2) Electrons are minority carriers and pentavalent atoms are dopants
- (3) Holes are minority carriers and pentavalent atoms are dopants
- (4) Holes are majority carriers and trivalent atoms are dopants

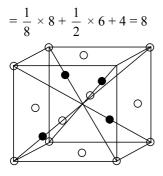
CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

Ans. Sol.	-	find similar question in (nority are hole and dopant	CP Sheet at : Page no. 198, Q are pentavalent.	9.53, Ex. 3(A) (Electronics)	
Q.44	0.03 mho and	· / ·	pove transistor is replaced wi	transistor used has transcond th another one with transcond	
	(1) $\frac{2}{3}$ G	(2) 1.5G	(3) $\frac{1}{3}$ G	(4) $\frac{5}{4}$ G	
Ans. Sol.	•	$\frac{V_o}{V_i} = \frac{I_o R_o}{V_i} = g_m R_0$	Class notes : [Topic : Electro	nics]	
Q.45		of the logic circuit shown A•	in figure will be -		
Ans. Sol.	(1) $X = \overline{\overline{A}} \cdot \overline{\overline{B}}$ [3] Students may $\overline{A} \bullet$ $B \bullet$	find similar question in ((3) X = A.B CP Sheet at : Page no. 195, Q = B = A.B	(4) X = A + B 9.16 (Electronics)	
Q.46		anck's constant is 6.63 × 1	10^{-34} Js. The speed of light is 3 tum of light with frequency of (3) 50	$3 \times 10^{17} \text{ nm s}^{-1}$. Which value is $5 6 \times 10^{15} \text{ s}^{-1}$? (4) 75	s closes
Ans. Sol.	[3]	find this question in CP s ⁴ Js. n/sec. c ⁻¹		same as to Page 33, Ex3(A)	Q.27.
Q.47	What is the m numbers ? $n = 3, \ell = 1$ and		ctrons that can be associated	with the following set of q	luantun
	(1) 10	(2) 6	(3) 4	(4) 2	
		POINT, CP Tower, Road	d No.1, IPIA, Kota (Raj.) Ph.: 0		9 / 51

		NEET EXAMIN		GABEE POOT
Ans. Sol.	[4] Students may fin	d this question in CP Shee	t at • Atomic structure- sim	ilar to Page 22, Ex1 Q.42.
501.	$n = 3$ $\ell = 1$ m	-	t at . Atomic structure- sim	mar to 1 age 22, 12x1 Q.42.
	$3p_x \text{ or } 3p_y \qquad \text{not}$			
Q.48			f its rate doubles when the t	temperature is raised from 20°C
	35° C? (R = 8.314 (1) 342 kJ mol ⁻¹		(3) 34.7 kJ mol ^{-1}	(4) 15.1 kJ mol ^{-1}
Ans.	[3]			
Sol.			t at : Chemical kinetics- sin	nilar to Page 186, Ex1 Q.93.
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303 \times C}$	$\frac{1}{\sqrt{R}} \left(\frac{1}{293} - \frac{1}{308} \right)$		
	$\log 2 = \frac{\mathrm{Ea}}{2.303\mathrm{R}}$	$\left(\frac{308-293}{293\times 308}\right)$		
	$E_a = 34673 J = 34$.67 kJ		
Q.49	A hydrogen gas el	lectrode is made by dipping	platinum wire in a solution	of HCl of pH = 10 and by passir
	hydrogen gas arou	and the platinum wire at one	atm pressure. The oxidation	potential of electrode would be ?
	(1) 0.059 V	(2) 0.59 V	(3) 0.118 V	(4) 1.18 V
Ans.	[2]			
Sol.	Students may fin	d this question in CP Shee	t at : Electrochemistry- sim	ilar to Page 26, Ex2 Q.19.
	$H_2 \longrightarrow 2H^+ + 2e^-$	_		
	$E_{\rm oxi} = E^{\rm o}_{\rm oxi} - \frac{0.05}{2}$	$\frac{19}{P_{H_2}} \log \frac{[H^+]^2}{P_{H_2}}$		
	$=0-\frac{0.059}{2}\log \frac{1}{2}$	$\frac{[10^{-10}]^2}{1}$		
	$=-\frac{0.059}{2} \times (-20)$)		
	= 0.59 V			
Q.50	A reaction having	equal energies of activation	for forward and reverse reac	tions has -
	$(1) \Delta S = 0$	$(2) \Delta G = 0$	$(3) \Delta H = 0$	(4) $\Delta H = \Delta G = \Delta S = 0$
Ans.	[3]	• •		
Sol.		d this question in CP Shee	t at : Chemical kinetics- sin	nilar to Page 184, Ex1 Q.77.
	$\Delta H = (E_a)_f - (E_a)_b$	_		
	Given $(E_a)_f = (E_a)_f$			
	$Orven (L_a)_f (L_a)_f$			

and at infini hydroxide at (1) 2.080 % Ans. [3] Sol. Students m $\alpha = \frac{\pi_m}{\pi_m^{\infty}} = -$ or 4.008 % Q.52 Based on e correct ? (1) The negative (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discut As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + F The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	CODE-W		CANEER CANEER	ruer.
hydroxide ai (1) 2.080 % Ans. [3] Sol. Students m $\alpha = \frac{\pi_m}{\pi_m^{\infty}} = -$ or 4.008 % Q.52 Based on e correct ? (1) The negative would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discut As we move Q.53 A button cell Zn(s) + Ag2 If half cell p Zn ²⁺ (aq) + Ag2O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g		ductance of 0.1 molar aqueous		
(1) 2.080 % Ans. [3] Sol. Students m $\alpha = \frac{\pi_m}{\pi_m^{\infty}} = -$ or 4.008 % Q.52 Based on e correct ? (1) The negative would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discut As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pottive (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	and at infinite dilu	tion its molar conductance is 23	$38 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$. The de	gree of ionisation of ammo
Ans. [3] Sol. Students m $\alpha = \frac{\pi_m}{\pi_m^{\infty}} = -$ or 4.008 % Q.52 Based on e correct ? (1) The nega it would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E° _{Cell} = 0.76 Q.54 How many g	hydroxide at the sa	me concentration and temperat	ure is -	
Sol. Students m $\alpha = \frac{\pi_m}{\pi_m^{\infty}} = -$ or 4.008 % Q.52 Based on e correct ? (1) The negative would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discut As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pott (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	(1) 2.080 %	(2) 20.800 %	(3) 4.008 %	(4) 40.800 %
$\alpha = \frac{\pi_{m}}{\pi_{m}^{\infty}} = -\frac{\pi_{m}}{\pi_{m}^{\infty}}$ or 4.008 % Q.52 Based on e correct ? (1) The negative would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discut As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + F The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	[3]			
q.52 Based on e correct ? (1) The nega it would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + H$ The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	Students may find	l this question in CP Sheet at	: Electrochemistry- simila	ar to Page 15, Ex1 Q.24.
Q.52Based on ecorrect ?(1) The negalit would(2) Larger fl(3) Equation(4) For n =more loAns.[4]Sol.Same discuAs we moveQ.53A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + F$ The cell pot(1) 1.10 VAns.[1]Sol.Students mCell rep ZrE°Cell = 0.76Q.54How many g	$\alpha = \frac{\pi_{\rm m}}{\pi_{\rm m}^{\infty}} = \frac{9.54}{238} =$	0.04008		
correct ? (1) The negative would (2) Larger th (3) Equation (4) For $n =$ more lo Ans. [4] Sol. Same discution As we move Q.53 A button cellic Zn(s) + Ag2 If half cell pic Zn ²⁺ (aq) + Ag2O(s) + H The cell pottic (1) 1.10 V Ans. [1] Sol. Students mic Cell repizer E ^o Cell = 0.76 Q.54 How many gives the concent	or 4.008 %			
correct ? (1) The negative would (2) Larger th (3) Equation (4) For $n =$ more lo Ans. [4] Sol. Same discution As we move Q.53 A button cellic Zn(s) + Ag2 If half cell pic Zn ²⁺ (aq) + Ag2O(s) + H The cell pottic (1) 1.10 V Ans. [1] Sol. Students mic Cell repizer E ^o Cell = 0.76 Q.54 How many gives the concent		(7^2)		
(1) The negative formula (1) The negative would (2) Larger the (3) Equation (4) For $n = more lo$ Ans. [4] Sol. Same discution As we move (4) For $n = more lo$ Ans. [4] Sol. Same discution As we move (4) For $n = more lo$ Ans. [4] Sol. Same discution As we move (4) For $n = more lo$ Ans. [4] Sol. Same discution As we move (4) For $n = more lo$ (5) For $n = more lo$ Ans. [4] Sol. Students minimum Cell rep Zrist E ^o Cell = 0.76 Q.54 How many for the concent	Based on equation	$h E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2}\right)$, certain conclusions are	written. Which of them
it would (2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g The concent	correct ?			
(2) Larger th (3) Equation (4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	(1) The negative si	gn in equation simply means th	at the energy of electron bo	ound to the nucleus is lowe
(3) Equation (4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cell Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + F The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g The concent	it would be if	the electrons were at the infinite	e distance from the nucleus.	
(4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	(2) Larger the valu	e of n, the larger is the orbit rad	lius.	
(4) For n = more lo Ans. [4] Sol. Same discu As we move Q.53 A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g	(3) Equation can b	e used to calculate the change in	n energy when the electron	changes orbit.
more lo Ans. [4] Sol. Same discu As we move Q.53 A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + H$ The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E° _{Cell} = 0.76 Q.54 How many g The concent	. / -	electron has a more negative en		•
Sol. Same discu As we move Q.53 A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + H$ The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent		bound in the smallest allowed or		
As we move Q.53 A button cell $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + F$ The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g The concent	[4]			
Q.53A button cel $Zn(s) + Ag_2$ If half cell p Zn^{2+} (aq) + $Ag_2O(s) + H$ The cell pot(1) 1.10 VAns.[1]Sol.Students mCell rep Zr $E^{\circ}Cell = 0.76$ Q.54How many gThe concent	Same discussed in	CP Class Theory Notes.		
Zn(s) + Ag ₂ If half cell p Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g The concent	As we move neare	r to the nucleus e ⁻ are more stro	ngly bonded.	
If half cell p Zn^{2+} (aq) + $Ag_2O(s) + H$ The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr E ^o Cell = 0.76 Q.54 How many g The concent	A button cell used	in watches functions as followi	ng	
Zn ²⁺ (aq) + Ag ₂ O(s) + H The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent	$Zn(s) + Ag_2O(s) +$	$H_2O(\ell) \rightleftharpoons 2Ag(s) + Zn^{2+} (aq)$	$+2OH^{-}(aq)$	
Ag ₂ O(s) + F The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent	If half cell potentia			
The cell pot (1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr $E^{\circ}Cell = 0.76$ Q.54 How many g The concent	Zn^{2+} (aq) + 2e ⁻ \rightarrow	$Zn(s)$; $E^{o} = -0.76 V$		
(1) 1.10 V Ans. [1] Sol. Students m Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent	$Ag_2O(s) + H_2O(l)$	$+2e^{-} \rightarrow 2Ag(s) + 2OH^{-}(aq), E$	$^{\circ} = 0.34 \text{ V}$	
Ans. [1] Sol. Students m Cell rep Zr E [°] _{Cell} = 0.76 Q.54 How many g The concent	The cell potential	will be -		
Sol. Students m Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent	(1) 1.10 V	(2) 0.42 V	(3) 0.84 V	(4) 1.34 V
Cell rep Zr $E^{\circ}_{Cell} = 0.76$ Q.54 How many g The concent				
$E^{o}_{Cell} = 0.76$ Q.54 How many g The concent	•	l this question in CP Sheet at	: Electrochemistry, Page	20, Ex1 Q.87.
Q.54 How many a The concent	Cell rep Zn/Zn^{+2}			
The concent	$E_{Cell}^{\circ} = 0.76 + (0.3)$	(4) = 1.1 V		
The concent	How many grams	of concentrated nitric acid solut	ion should be used to prena	are 250 mL of 2.0 M HNO ₂
		ucid is 70 % HNO ₃ .	I I I I I I I I I I I I I I I I I I I	
(1)		NO ₃ (2) 90.0 g conc. HNO ₃	(3) 70.0 conc. HNO ₃	(4) 54.0 g conc. HNO ₃
Ans. [1]	•	-		
		DINT, CP Tower, Road No.1, II		

	CODE-W	NEET EXAMINATION 2013	🤦 🛛 CAREER POI
Sol.	Similar Question	discussed in CP Class Theory Notes.	
	$\frac{W}{E} = NV$		
	$\frac{\mathrm{w}}{63} = 2 \times \frac{250}{1000}$		
	$w = \frac{63}{2} = 31.5 g$		
	but 70 % solution		
	70 g is used the wt.	of solution is 100 g	
	31.5 g is used the w	vt. of solution is ?	


- $\frac{100}{70} \times 31.5 = 45 \text{ g}$
- Q.55 The number of carbon atoms per unit cell of diamond unit cell is -

(1) 4 (2) 8 (3) 6	(4) 1
---------------------	-------

Ans.

[2]

Students may find this question in CP Sheet at : Solid state- similar to Page 123, Ex.-3(A) Q.26. Sol. Effective atoms

Q.56	Maximum deviation from ideal gas is expected from :					
	$(1) H_2(g)$	(2) $N_2(g)$	(3) CH ₄ (g)	(4) NH ₃ (g)		
Ans.	[4]					

Students may find this question in CP Sheet at : Gaseous state- similar to Page 115, Ex.-2 Q.25. Sol. NH₃ is polar molecule

: intermolecular force of attraction are very high

 \therefore a is maximum and deviation is maximum.

A metal has a fcc lattice. The edge length of the unit cell is 404 pm. The density of the metal is 2.72 g cm^{-3} . Q.57 The molar mass of the metal is : $[N_A \text{ Avogadro's constant} = 6.02 \times 10^{23} \text{ mol}^{-1}]$ (4) 20 g mol⁻¹

(3) 27 g mol⁻¹ (1) 40 g mol⁻¹ (2) 30 g mol⁻¹

[3] Ans.

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

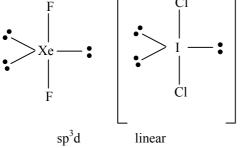
	CODE-W	NEET EXAMINATIO	DN 2013	CAREER POINT
Sol.	Students may find this	question in CP Sheet at :	Solid state- similar to Pag	e 116, Ex1 Q.24.
	$\rho = \frac{Z \times M_w}{N_A \times V}$		$V = a^3$	
	$2.72 = \frac{4 \times M_{w}}{6.02 \times 10^{23} \times 6.6}$	×10 ⁻²³	$V = (404 \times 10^{-10})^3$	
	$M_{\rm w} = \frac{2.72 \times 6.023 \times 6.6}{4}$		$= 6.6 \times 10^{-23}$	
	= 27 g/mol.			
Q.58	Dipole - induced dipole	nteractions are present in	which of the following pairs	
	(1) H_2O and alcohol	(2) Cl_2 and CCl_4	(3) HCl and He atoms	(4) SiF_4 and He atoms
Ans.	[3]			
Sol.	•	-	at : Chemical bonding-Pag l & He atom. Because HCl	molecule is polar and induces
Q.59	A magnetic moment of 1	.73 BM will be shown by	one among the following -	
	(1) $[Cu(NH_3)_4]^{2+}$	(2) $[Ni(CN)_4]^{2-}$	(3) $TiCl_4$	(4) $[CoCl_6]^{4-}$
Ans.	[1]			
Sol.	$[Cu(NH_3)_4]^{2+}$	r question in CP Sheet at :	Coordination Compound-P	Page 77-Q.129).
	$Cu^{+2} = [Ar] 3d^9$ $n = 1$			
	$\mu = \sqrt{n(n+2)} B.N.$	[.		
	$\mu = \sqrt{1(1+2)}$			
	$\mu = \sqrt{3}$			
	μ = 1.73 B.M.			
Q.60	Roasting of sulphides g	ives the gas X as a bypr	oduct. This is colorless gas	s with choking smell of burnt
	sulphur and causes great	damage to respiratory or	gans as a result of acid rain.	Its aqueous solution is acidic,
	acts as a reducing agent a	and its acid has never beer	isolated. The gas X is -	

 $(1) H_2 S$ (2) SO₂ (3) CO₂ (4) SO₃

Ans. [2]

Students may find this question in CP Class Notes. Sol.

Roasting process carried out in reverberatory furnace. It is used for sulphide ore's to convert in metal oxide.


 $MS + O_2 + \xrightarrow{\Delta} MO + SO_2$

Colourless gas

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

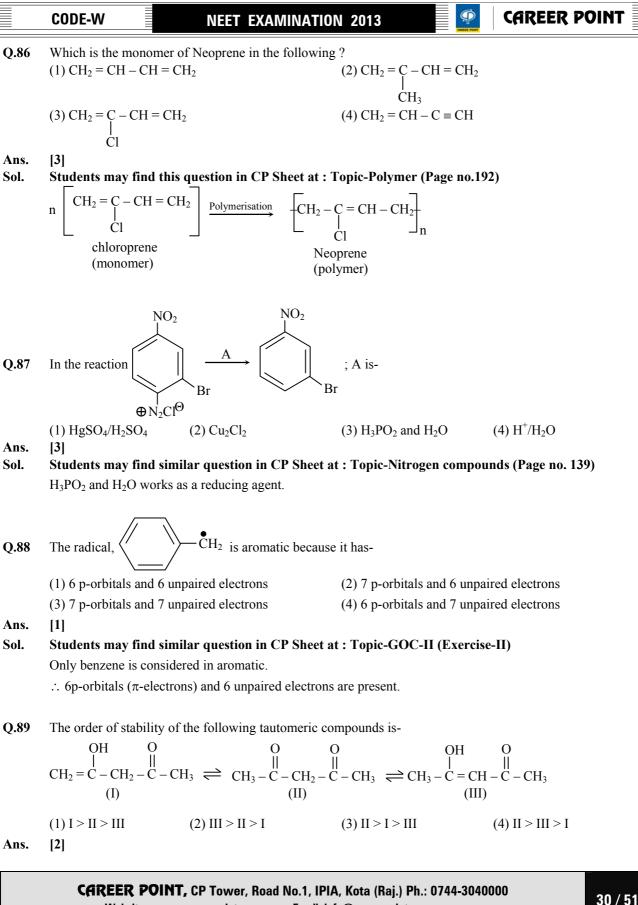
	CODE-W	NEET EXAMIN	IATION 2013	🧐 🛛 CAREER POINT				
Q.61		trongest acid in the following?						
	(1) H_2SO_4	(2) $HClO_3$	(3) HClO ₄	$(4) H_2 SO_3$				
Ans.	[3] Studente mar	find this avastion in CD Shar	t at . A sid Daga similar	a Daga 157 Ev. 1(D) () 130				
Sol.	•	r find this question in CP Shee relative acid base strength, HCl						
Q.62	Which of the following is paramagnetic ? (1) CO (2) CN ⁻ (4) NO ⁺							
	(1) CO	(2) O_2^-	(3) CN ⁻	(4) NO^+				
Ans.	[2]							
Sol.	$O_2^- \Rightarrow \sigma 1s^2 \sigma^2$ $(\pi^* 2p_x^2 = \pi^* 2p_x^2)$	find similar question in CP Shet * $1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 (\pi 2p_x^2 = p_y^1)$ electron present in π^* abmo.		'age 239-Q.113).				
Q.63	Which of the f	following structure is similar to	graphite ?					
-	(1) BN	(2) B	$(3) B_4C$	(4) B_2H_6				
Ans.	[1]							
Sol.	-	on discussed in CP Class Notes. graphite) and graphite have her	kagonal structure (sp ²)					
Q.64	The basic stru	ctural unit of silicates is -						
	(1) SiO ⁻	(2) SiO_4^{4-}	(3) ${\rm SiO_3}^{2-}$	(4) SiO_4^{2-}				
Ans.	[2]							
Sol.		nd similar question in CP class ⁷ ilicate is tetrahedral SiO ₄ ⁻⁴	Theory Notes.					
Q.65	<u> </u>	hich Benzaldehyde cannot be p	prepared-					
	(1) $CH_3 + CrO_2Cl_2 \text{ in } CS_2 \text{ followed by } H_3O^+$							
	(2) $+$ H ₂ in presence of Pd-BaSO ₄							
	(3)	+ CO + HCl in presenc	e of anhydrous AlCl ₃					
	(4)	COOH + Zn/Hg and conc. HCl						

	CODE-W	NEET EXAMINATIO	DN 2013	CAREER POINT			
Ans. Sol.	[4] Students may find this question in CP Class Theory Notes. Zn-Hg/conc.HCl is Clemmenson reduction. It can be used for $-C$ only.						
Q.66	Which of the following does not give oxygen on heating ?						
	(1) KClO_3	(2) $Zn(ClO_3)_2$	$(3) \text{ K}_2\text{Cr}_2\text{O}_7$	(4) $(NH_4)_2Cr_2O_7$			
Ans.	[4]						
Sol.	-	m CP Class Theory Notes.					
	$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N$	$I_2 + Cr_2O_3 + 2H_2O$					
	$2\text{KClO}_3 \xrightarrow{\Delta} 2\text{KCl}$	+ 3O ₂					
	$Zn(ClO_3)_2 \xrightarrow{\Delta} ZnC$	$\mathrm{Sl}_2 + \mathrm{3O}_2$					
	$K_2Cr_2O_7 \xrightarrow{\Delta} 2 K_2C$	$CrO_4 + Cr_2O_3 + \frac{3}{2}O_2$					
Q.67	Which of the following $(1) \operatorname{Ce}^{2^+}$	g lanthanoid ions is diamagn (2) Sm ²⁺	etic ? (At. No. Ce = 58, Sm $(3) \text{ Eu}^{2+}$	n = 62, Eu = 63, Yb = 70) (4) Yb^{2+}			
Ans.	[4]						
Sol.	Similar Questions fro $_{70}$ Yb = [Xe] $4f^{14}5d^{0}$ Yb ⁺² = [Xe] $4f^{14}$ n = 0 \therefore Diamagnetic	m CP Class Theory Notes. 6s ²					
Q.68	Identify the correct ord	ler of solubility in aqueous n	nedium-				
L	•	(2) $ZnS > Na_2S > CuS$		(4) $Na_2S > ZnS > CuS$			
Ans.	[4]						
Sol.	-	ssed in CP Class Theory N					
	IA group elements sulp \therefore Na ₂ S > ZnS > CuS	bhide are highly soluble, Zn ⁺	⁻² is IV group radical and Cu	u ⁺² is II group radical			
Q.69	XeF ₂ is isostructural w	ith-					
	(1) TeF_2	(2) ICl_2^-	(3) $SbCl_3$	(4) $BaCl_2$			
Ans.	[2]			D 000 0 N 10			
Sol.	Students may find thi	s question in CP Sheet : To	opic-Chemical bonding at	Page no.230, Q.No.48			
	F						

	CODE-W	NEET EXAMIN	NATION 2013	CAREER POINT
Q.70	-			otetraaquachrominum (III) chloride.
	The number of me	oles of AgCl precipitated w		
	(1) 0.001	(2) 0.002	(3) 0.003	(4) 0.01
Ans.	[1]			
Sol.		n in CP Class Theory Note	s.	
	$AgNO_3 + [Cr(H_2O_3)]$	$O)_4Cl_2]Cl \rightarrow AgCl$		
	Excess	$mole = MV_{(lit)}$		
		$= 0.01 \times \frac{100}{1000}$)	
		= 0.001		
Q.71	Which of these is	least likely to act as a Lewi	s base ?	
Ans.	(1) CO [3]	(2) F ⁻	(3) BF ₃	(4) PF_3
Sol.		d this question in CP She	et : Topic-Acid-Base at Pag	ge no.158, Ex.1(B) Q.No.122
		ficient so act as Lewis acid.		
Q.72	KMnO ₄ can be pr	repared from K ₂ MnO ₄ as pe	r the reaction : $3MnO_4^{2-} + 2$	$2H_2O \Longrightarrow 2MnO_4^- + MnO_2 + 4OH^-$
	The reaction can	go to completion by removi	ng OH ⁻ ions by adding-	
	(1) HCl	(2) KOH	(3) CO ₂	$(4) SO_2$
Ans.	[3]			
Sol.		d this question in CP Clas		
		ICl and SO ₂ to Cl ₂ and SO ₃		
	MnO_4^- does not o	xidizes H ₂ CO ₃ (maximum o	oxidation state of C)	
Q.73	Which of the follo	owing is electron-deficient	,	
C	$(1) (CH_3)_2$	(2) (SiH ₃) ₂	$(3) (BH_3)_2$	(4) PH ₃
Ans.	[3]	()(- 5)2	(-) (5)2	
Sol.		d this question in CP She	et : Topic-Chemical bondir	ng at Page no.229, Q.No.37
		-	-	shell. In B_2H_6 molecule sufficient
			•	B_2H_6 molecule is electron deficient.
Q.74	Structure of the co	ompound whose IUPAC nat	me is 3-Ethyl-2-hydroxy-4-r	nethylhex-3-en-5-ynoic acid is-
	OH		OH	
		00011	\wedge	0011
		СООН		ООН
	ОН		1	
		СООН		ООН
	(3)	00011		
			ОН	

Ans. [2]

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com


	CODE-W	NEET EXA	MINATION 2013		CAREER POINT
Sol.	Students may	find similar question in C	CP Class Theory Notes	at GOC-I	
	OH				
		СООН			
	3-Ethyl-2-hydr	coxy-4-methyl hex-3-en-5-y	noic acid		
Q.75	Which of these	e is not a monomer for a hig	gh molecular mass silico	ne polymer ?	
	(1) MeSiCl ₃	(2) Me_2SiCl_2	(3) Me ₃ SiCl		(4) PhSiCl ₃
Ans.	[3]				
Sol.	-	ion from CP Class Theory			
		licone form by hydrolysis	•	condensation	
		cone form by hydrolysis of	MeSiCl ₃ .		
		ed to stop chain length			
	Me ₃ SiCl — HO	$\xrightarrow{\text{OH}}$ Me ₃ SiOH			
	$Me_3SiOH + He$	$OSiMe_3 \rightarrow Me_3Si - O - OSiMe_3 \rightarrow Me_3Si - O - O - OSIMe_3 \rightarrow Me_3Si - O - O - O - O - O - O - O - O - O - $	SiMe ₃		
Q.76	Which of the fe	ollowing statements about	the interstitial compound	ls is incorrect	?
		metallic conductivity			
		nemically reactive			
		such harder than the pure m			
		higher melting points than	the pure metal		
Ans.	[2]				
Sol.	-	ion from CP Class Theory			
	Interstitial com	pound are chemically inert	t.		
Q.77		the following molecules co			
	(1) CO_2	(2) H ₂ O	(3) SO ₂		$(4) \operatorname{NO}_2$
Ans.	[2]				
Sol.	-	ion from CP Class Theory	V Notes.		
	CO_2 $O = C =$ SO_2 $O = S =$				
	•	-0			
	NO_2 N_0	,			
	н ₂ 0: Н20: Н Н				
	п20 Н Н				

H₂O molecule does not contain π bond.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W NEE	T EXAMINATIO	N 2013	CAREER POINT		
Q.78	 Antiseptics and disinfectants either kill or prevent growth of microrganisms. Identify which of the following statements is not true- (1) A 0.2 % solution of phenol is an antiseptic while 1 % solution acts as a disinfectant (2) Chlorine and Iodine are used as strong disinfectants (3) Dilute solutions of boric acid and hydrogen peroxide are strong antiseptics 					
Ans. Sol.	(4) Disinfectants harm the living[2]Students may find theory of this Chlorine is disinfectants but Iodin	tissues question in CP Sh				
Q.79	Among the following ethers, white (1) $CH_3 - CH_2 - CH_2 - CH_2 - O$	ch one will produc – CH3	e methyl alcohol on tre (2) $CH_3 - CH_2 - CH_1$	eatment with hot concentrated HI ? $- O - CH_3$		
	$(3) CH_3 - C - O - CH_3$ $ CH_3 - C - O - CH_3$ $ CH_3$		(4) $CH_3 - CH - CH_2$ $ CH_3$			
Ans.	ĊH ₃ [3]		ĊH ₃			
Sol.	Students may find this question CH ₃			.56)		
	$\begin{array}{c} CH_{3} \\ \\ CH_{3} - C - O - CH_{3} \\ \\ CH_{3} \end{array} \xrightarrow{HI} CH_{3} \end{array}$	$CH_3 - C - I + CH$ $ CH_3 - C - I + CH$ CH_3	3-ОН			
Q.80 Ans.	Nylon is an example of- (1) Polyester (2) Poly [3]	vsaccharide	(3) Polyamide	(4) Polythene		
Sol.	Students may find this question Nylon is polyamide.	in CP Sheet at : '	Fopic-Polymers (page	e no.194)		
Q.81	The structure of isobutyl group in	an organic compo	und is-			
	$(1) \frac{\mathrm{CH}_3}{\mathrm{CH}_3} > \mathrm{CH} - \mathrm{CH}_2 -$		(2) $CH_3 - CH - CH_2$ CH ₃	– CH ₃		
	(3) $CH_3 - CH_2 - CH_$		$(4) CH_3 - C - CH_3$			
Ans. Sol.	[1] Students may find this question CH ₃ - CH - CH ₂ - is isobutyl g CH ₃					
	CAREER POINT, CP Tow Website : www.careerpoir			78 / 51		

	CODE-W NEET EXAMINATION 2013 SCAREER POINT
Q.82	Nitrobenzene on reaction with conc. HNO_3/H_2SO_4 at $80 - 100^{\circ}C$ forms which one of the following products(1) 1,2-Dinitrobenzene(2) 1,3-Dinitrobenzene(3) 1,4-Dinitrobenzene(4) 1,2,4-Trinitrobenzene
Ans. Sol.	[2] Students may find this question in CP Sheet at : Topic-Nitrogen compounds (Page no.121) NO ₂ NO ₂ ↓ ↓
	$\underbrace{\bigcirc} \xrightarrow{\operatorname{HNO}_3 + \operatorname{H}_2 \operatorname{SO}_4} \underset{\operatorname{NO}_2}{\underbrace{\bigcirc}}$
	\therefore –NO ₂ group is meta directing group.
Q.83 Ans.	Some meta - directing substitution in aromatic substitution are given. Which one is most deactivating ? (1) $-C \equiv N$ (2) $-SO_3H$ (3) $-COOH$ (4) $-NO_2$ [4]
Ans. Sol.	Students may find this question in CP Class Theory Notes at GOC-II –NO ₂ is strong deactivating group.
Q.84	6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is- (1) 0.02 M (2) 0.01 M (3) 0.001 M (4) 0.1 M
Ans. Sol.	[2] Similar Question in CP Class Theory Notes. $M = \frac{\text{mole}}{V_{(\text{ml})}} \times 1000 = \frac{0.001}{100} \times 1000 = 0.01 \text{ M}$
Q.85	Which of the following is a polar molecule ? (1) BF_3 (2) SF_4 (3) SiF_4 (4) XeF_4
Ans. Sol.	[2] Students may find this question in CP Sheet : T <u>op</u> ic-Chemical bonding at Page no.229, Q.No.35
	$BF_3 \xrightarrow{F} B \longrightarrow F$ trigonal planar
	SiF ₄ F F F F F F F $\mu = 0$ Non polar
	$\ddot{X}eF_4$ F Square planar F
	SF ₄ sp ³ d $F > F S = Sea-Saw$ $\mu \neq 0$ F = F F

Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	NEET EXAMIN	NATION 2013		CAREER POINT
Sol.	Students may find	similar question in CP S	Sheet at : GOC-I (Page no. 51)	
		Enol with π - π			
		conjugation & Intramolecular		$>$ I \rightarrow (Er	nol)
		H-bonding	↓ (Ket	0)	
			(Ket	0)	
Q.90	Which of the follow	ving compounds will not u	undergo Friedal-Cra	aft reaction easily	-
	(1) Cumene	(2) Xylene	(3) Nitrobe	enzene	(4) Toluene
Ans.	[3]				
Sol.	-	this question in CP Clas	ss Theory Notes at	GOC-II.	
	–NO ₂ group is stron	g deactivating.			
	\therefore It inhibits F.C.R.				
Q.91	Select the wrong sta	atement :			
	(1) Isogametes are s	imilar in structure, functi	on and behavior		
	(2) Anisogametes di	iffer either in structure, fu	nction of behaviou	r	
	(3) In Oomycetes fe	male gamete is smaller an	nd motile, while ma	ale gamete is larg	er and non-motile
	(4) Chlamydomonas	s exhibits both isogamy an	nd anisogamy and <i>l</i>	<i>Fucus</i> shows oog	amy
Ans.	[3]				
Sol.	-	this question in CP She			
	-				both the fusing gametes are nete both are nonmotile and
		ge while male gamete is		te and female gai	nete bour are nonmotile and
	fonture gamete is fur	ge while male gamete is	Jilluit.		
Q.92	Which one of the fo	llowing is not a correct st	tatement ?		
	(1) Herbarium house	es dried, pressed and pres	served plant specim	ens	
	(2) Botanical garden	ns have collection of livin	g plants for referen	ce	
		collection of photographs	-	als	
	• •	nic aid for identification of	of specimens		
Ans.	[3]				
Sol.	· ·	this question in NCERT ection of dead and preserv	10	,	
	Wuseum is the cone	ction of dead and preserv	red specifien of and	mais generally.	
Q.93	Isogamous condition	n with non-flagellated ga	metes is found in:		
	(1) Chlamydomonas	s (2) Spirogyra	(3) Volvox		(4) Fucus
Ans.	[2]				
Sol.		this question in CP Shee		t page no. 19	
	In spirogyra isogam	y occur by nonomotile ga	ametes.		

	CODE-W	NEET EXAMINAT	ION 2013	🧐 🛛 CAREER POINT				
Q.94	Besides paddy fields	, cyanobacteria are also found	d inside vegetative part o	of :				
	(1) Pinus	(2) Cycus	(3) Equisetum	(4) Psilotum				
Ans.	[2]							
Sol.	Students may find this question in CP Sheet at : Plant Diversity page no. 47							
	Coralloid root of cycas plant possess cyanobacteria							
Q.95	Megasporangium is	equivalent to :						
	(1) Embryo sac	(2) Fruit	(3) Nucellus	(4) Ovule				
Ans.	[4]							
Sol.	Students may find t	this question in CP Sheet : F	Reproduction in floweri	ng plants page no. 15				
	Ovule is megasporar	ngium and have sporogenous	cells which produce meg	aspore by meiosis				
Q.96	Read the following s	tatements (A– E) and answer	the question which follo	ows them :				
	(A) In liverworts, mo	osses and ferns gametophytes	are free-living					
	(B) Gymnosperms and some ferns are heterosporous							
	(C) Sexual reproduct	(C) Sexual reproduction in <i>Fucus</i> , <i>Volvox</i> and <i>Albugo</i> is oogameous						
	(D) The sporophytes	(D) The sporophytes in liverworts is more elaborate than that in mosses						
	(E) Both, Pinus and	(E) Both, <i>Pinus</i> and <i>Marchentia</i> are dioecious						
	How many of the ab	ove statements are correct?						
	(1) One	(2) Two	(3) Three	(4) Four				
Ans.	[3]							
Sol.	Students may find the Statement A, B and C	t his question in CP Sheet at C are correct	: Plant Diversity					
Q.97	• •		· • •	ber, sunnhemp, gram, guava, bean how many plants have hypogynous				
	(1) Six	(2) Ten	(3) Fifteen	(4) Eighteen				
Ans.	[3]							
Sol.	Students may find 140, 143.	this question in CP Sheet at	t : Structural organizat	tion in plant at page no. 134, 137				
		ninarose, chili, petunia, toma en plant have hypogynous flo		nion, aloe, tulip, lupin, sunnhemp				
Q.98	Interfascicular camb	ium develops from the cells o	of :					
	(1) Medullary rays	(2) Xylem parenchyma	(3) Endodermis	(4) Pericycle				
Ans.	[1]							
Sol.	Students may find t	this question in CP Sheet at	: Structural organizati	on in plant at page no. 36				
		ium is developed from the cel						

	CODE-W		NEET EXAMINATIO	DN 2013	CAREER POINT			
Q.99	In china rose th	e flowers	are :					
	(1) Actinomorphic, hypogynous with twisted aestivation							
	(2) Actinomorp	hic, epigy	nous with valvate aestivate	tion				
	(3) Zygomorphi	ic, hypogy	ynous with imbricate aesti	vation				
	(4) Zygomorphi	(4) Zygomorphic, epigynous with twisted aestivation						
Ans.	[1]							
Sol.	Students may f	find this o	question in CP Sheet at :	Structural organization in	plant at page no. 137			
	Malvaceae fami	ily						
Q.100	Lenticels are in							
	(1) Transpiratio	n	(2) Gaseous exchange	(3) Food transport	(4) Photosynthesis			
Ans.	[2]							
Sol.	•		-	Structural organization in	n plant at page no. 40.			
	Lenticels are in	volved in	gaseous exchange of tree	trunk and environment				
Q.101	Age of a tree ca	n be estin	nated by :					
	(1) Its height an							
	(2) Biomass	C						
	(3) Number of a	annual rin	gs					
	(4) Diameter of		-					
Ans.	[3]							
Sol.	Students may f	find this o	question in CP Sheet at :	Structural organization in	plant at page no. 39			
	Generally one a	innual ring	g is formed in one year du	ie to secondary growth. Thu	s by counting annual ring, age			
	of tree can be de	etermined	l					
*0 102		4.	, .					
*Q.102	2 Seed coat is not	thin men		(2) Carrie danst	(4) Creare			
	(1) Maize		(2) Coconut	(3) Groundnut	(4) Gram			
Ans.		· · · ·			1 4 4 1 4			
Sol.	•		m) is hard and thick due to	Structural organization in presence of sclereids	i plant at page no. 14			
		Guine (Bru	in) is hard and there due to	presence of sciencius				
Q.103	Transition state	structure	of the substate formed du	ring an enzymatic reaction is	5			
	(1) Transient bu	it stable						
	(2) Permanent b	out unstab	le					
	(3) Transient an	nd unstabl	e					
	(4) Permanent a	and stable						
Ans.	[3]							
Sol.	Students may f	find this o	question in CP Sheet at :	Plant physiology Eng. pag	e no. 117			
	Transition state	e is intern	nediate state produced du	aring enzymatic biochemica	al reaction which is transition			
	state and unstab	ole state						

NEET EXAMINATION 2013

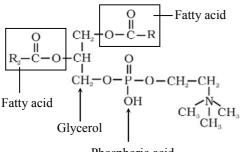
- Q.104 A phosphoglyceride is always made up of :
 - (1) Only a saturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached

P

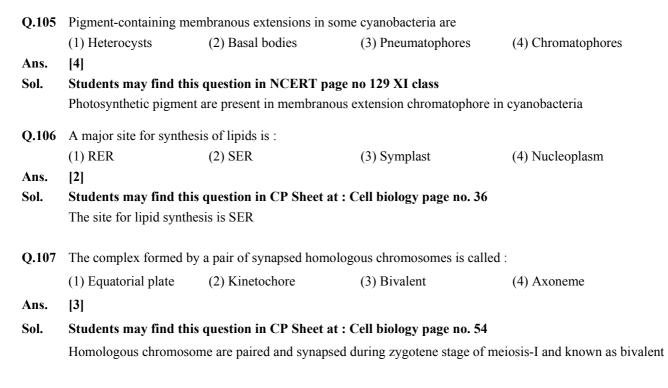
CAREER POINT

(2) Only an unsaturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached

(3) A saturated or unsaturated fatty acid esterified to a glycerol molecule to which a phosphate group is also attached


(4) A saturated or unsaturated fatty acid esterified to a phosphate group which is also attached to a glycerol molecule

Ans. [3]


Sol. Students may find this question in NCERT page 144

Fatty acid can be saturated or unsaturated. Here fatty acid are found esterified with glycerol which is attached with phosphate group

Ex. Lecithin

Phosphoric acid

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

NEET EXAMINATION 2013

CAREER POINT

Þ

Q.108	The three boxes in thi	s diagram represent the	three major bio	synthetic pathways in aerobic	respiration.			
	Arrows represent net reactants or products							
	glucose \rightarrow Pathway A 2 \rightarrow Pathway B 6 \rightarrow Pathway C \rightarrow 11 4 3 8 12							
	Arrows numbered 4, 8,							
	(1) NADH	(2) ATP	(3) H_2O	(4) FAD^+ or FAI	OH_2			
Ans.	[2]							
Sol.	Pathway-A is glycolysis							
	 Pathway-B is Krebs cycle Pathway-C is Electron transport system 1, 5 are respiratory substrates like protein and fats 6,7,3,9,10 are NADH₂, FADH₂ 							
	* 4, 8, 12 are ATP produced							
	· · ·							
Q.109	The most abundant intra (1) N $^+$		(2) II ⁺	(1) \mathbf{T}^+				
A	(1) Na^+	(2) Ca^{++}	(3) H^+	(4) K^+				
Ans. Sol.	[4] Stadarta man G addhia anatim in CD Shatta Animal abasiala m Hanara ng 202							
501.	Students may find this question in CP Sheet : Animal physiology-II page no. 202 K ⁺ is most abundant ion of intracellular fluid while Na+ is extra cellular fluid.							
	it is most doundant for			onului nulu.				
Q.110	During seed germination its stored food is mobilized by :							
	(1) Ethylene	(2) Cytokinin	(3) ABA	(4) Gibberellin				
Ans.	[4]							
Sol.	Students may find this question in CP Sheet at : Plant physiology English page no 147							
	Gibberellin have characteristic function breaking of seed dormancy by activating stored food hydrolyzing							
	enzymes amylase, lipas	e, protease.						
Q.111	Which of the following	criteria does not pertain to	facilitated trans	sport ?				
Q.III	Which of the following criteria does not pertain to facilitated transport ? (1) Requirement of special membrane proteins							
	(2) High selectivity	F						
	(3) Transport saturation							
	(4) Uphill transport							
Ans.	[4]							
Sol.	-	question in CP class not		logy (mineral nutrition)				
	0	ish page no. 178 table 11.						
	Facilitated transport means transport with help of carrier proteins which may be both uphill i.e. against the							
	concentration gradient and down hill i.e. in order of concentration gradient which is also called as facilitated							
	diffusion or passive faci	ilitated transport						

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	NEET EXAMINA	ATION 2013	🤦 🛛 CAREER POINT		
Q.112	The first stable product of fixation of atmospheric nitrogen in leguminous plants is :					
	(1) NO_2^-	(2) Ammonia	(3) NO_3^{-}	(4) Glutamate		
Ans.	[2]					
Sol.	Students may find this question in CP Sheet at : Plant physiology English page no. 224					
	NCERT 11 th class English page no 202					
	Product of fixation of N2 in leguminous plants by it's symbiotic associate Rhizobium bacteria, in root nodules					
	is NH ₃ (ammonia)					
*0.113	Which of the metabolites is common to respiration mediated breakdown of fats, carbohydrates and proteins ?					
-	(1) Glucose-6-phosp		(2) Fructose1, 6			
	(3) Pyruvic acid		(4) Acetyl CoA			
Ans.	[3]					
Sol.	Students may find this question in CP Sheet at : Plant physiology English page no. 68					
	NCERT XIth class English page no. 235					
	Pyruvic acid is intermediate compound which is produced during oxidation of all types of respiratory					
	substrates carbohydrates, fats, proteins					
	Protein Gluc	ose Fat				
	\downarrow	\downarrow				
		Glycolysis Glycerol I				
	Serine, Cystine,		Fatty acid			
	Alanine)		β-oxidation			
	$\longrightarrow Pyruvic acid \leftarrow PGAL/DHAP Acetyl CoA$					
	* option (4) Acetyl CoA may also be answer but more appropriate is pyruvic acid as it formed directly by al					
	these respiratory substrates.					
Q.114	Which one of the following statements is correct?					
	(1) Hard outer layer of pollen is called intine					
	(2) Sporogenous tissue is haploid					
	(3) Endothecium pro	duces the microspores				
	(4) Tapetum nourish	es the developing pollen				
Ans.	[4]					
Sol	Students may find t	his question in CP Sheet	at · Reproduction in	Flowering plant English page no. 7		

Sol. Students may find this question in CP Sheet at : Reproduction in Flowering plant English page no. 7 Tapetum is innermost layer of anther provide nutrition to developing microspore / pollens.

- Q.115 Product of sexual reproduction generally generates :
 - (1) Longer viability of seeds
 - (2) Prolonged dormancy
 - (3) New genetic combination leading to variation
 - (4) Large biomass
- Ans.

[3]

Sol. Sexual reproduction leads to new genetic combination leading to variation as it involves mixing of gametes to two different parents which are produced (gametes) by meiosis

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W		NEET EXAMI	NATION 2013	🧟 CAREER POINT	
Q.116	Meiosis takes	place in	:			
	(1) Meiocyte		(2) Conidia	(3) Gemmule	(4) Megaspore	
Ans.	[1]					
Sol.	Students mag	y find th	is question in CP She	et at : Cell biology page	no. 56	
	Meiocyte are	the cells	in which meiosis occu	r		
Q.117	Advantage of	cleistog	amy is :			
	(1) Higher ge	netic var	iability	(2) More vigoro	us offspring	
	(3) No depend	dence on	pollinators	(4) Vivipary		
Ans.	[3]					
Sol.	Students mag	y find th	is question in CP She	et at : Reproduction in :	flowering plant English page no. 23	
	Cleistogamy	means cl	osed flower which are	bisexual does not require	s pollinator still have assured seed set.	
Q.118	Monoecious r	olant of (Chara shows occurrence	e of :		
C ¹	-		nd archegoniophore on			
	(2) Stamen ar	nd carpel	on the same plant			
	(3) Upper ant	heridium	and lower oogonium	on the same plant		
		gonium a	nd lower antheridium	on the same plant		
Ans. Sol.	[4]		is question in NCER			
			Oogonium (female sex organ) Antheridium (male sex organ)			
Q.119	Perisperm dif	fers from	endosperm in :			
	(1) Being a ha	aploid tis	sue			
	(2) Having no	reserve	food			
	(3) Being a di	ploid tis	sue			
	(4) Its format	ion by fu	sion of secondary nuc	eus with several sperms		
Ans.	[3]					
Sol.	Perisperm is	persister	nt nucellus within se	eds. It is not common	as nucellus is nutritive tissue provid	
	nutrition to en	nbryosad	c. Nucellus is diploid t	issue. In Beet, Piper it is	persists within seed so it is diploid (21	
	nutrition to embryosac. Nucellus is diploid tissue. In Beet, Piper it is persists within seed so it is diploid (21 while endosperm is a triploid (3n) tissue					

	CODE-W		NEET EXAMIN	ATION 2013	CAREER POINT
Q.120		-		f two genes that show 50% re	combination frequency?
	•	•	n different chromosom	es	
	(2) The genes are				
			ependent assortment		
	(4) If the genes meiosis.	are pr	resent on the same chi	omosome, they undergo mor	re than one crossovers in eve
Ans.	[2]				
Sol.	•		question in NCERT		
	If gene are present 50% recombinant			tightly linked they show very	y few recombinant so they sho
Q.121	referred to as :	freque		ns can occur by chance rather	than by natural selection. This
Ans.	(1) Genetic flow [2]		(2) Genetic drift	(3) Random mating	(4) Genetic load
Sol.		nd this	s question in NCERT	nage 137	
	-	due to	-		gene frequency change occurs l
Q.122	-				
Q.122	could be classifie of protein electro This is an exampl	d as 'A phores le of :	A' blood group : 'AB' blosis reveals presence of	bod group : 'B' blood group in both 'A' and 'B' type proteins	1 : 2 : 1 ratio. Modern techniq in 'AB' blood group individua
-	could be classifie of protein electro	d as 'A phores le of :	A' blood group : 'AB' blosis reveals presence of	ood group : 'B' blood group in	1:2:1 ratio. Modern techniqu
Ans.	could be classifie of protein electro This is an exampl (1) Codominance [1]	d as 'A phores le of :	A' blood group : 'AB' blosis reveals presence of (2) Incomplete domin	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance	1 : 2 : 1 ratio. Modern techniqu in 'AB' blood group individua
Ans.	could be classifieof protein electroThis is an exampl(1) Codominance[1]Students may fir	d as 'A ophores le of :	A' blood group : 'AB' blosis reveals presence of (2) Incomplete domin s question in NCERT	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77	1 : 2 : 1 ratio. Modern techniqu in 'AB' blood group individual
Ans. Sol.	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fir I ^A and I ^B present The process by w response to a com	d as 'A pphores le of : ad this togeth which o	A' blood group : 'AB' blosis reveals presence of (2) Incomplete domines question in NCERT per they both express the organisms with different environmental challeng	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called :	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations
Ans. Sol. Q.123	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fir I ^A and I ^B present The process by w response to a corr (1) Natural select	d as 'A pphores le of : ad this togeth which o	A' blood group : 'AB' blosis reveals presence of (2) Incomplete domines question in NCERT per they both express the organisms with different environmental challeng	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 eir own type of sugar on the su t evolutionary history evolve s	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations
Ans. Sol. Q.123 Ans.	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fin I ^A and I ^B present The process by w response to a corr (1) Natural select [2]	d as 'A phores le of : nd this togeth /hich o nmon o ion	A' blood group : 'AB' blosis reveals presence of (2) Incomplete domin 5 question in NCERT per they both express the organisms with differen environmental challeng (2) Convergent evolu	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : ttion (3) Non-random evolut	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations tion (4) Adaptive radiation
Ans. Sol. Q.123 Ans.	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fin I ^A and I ^B present The process by w response to a corr (1) Natural select [2]	d as 'A phores le of : nd this togeth which o nmon e ion	A' blood group : 'AB' blood sis reveals presence of (2) Incomplete domin a question in NCERT p er they both express the organisms with differen environmental challeng (2) Convergent evolu	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : ttion (3) Non-random evolut	 1 : 2 : 1 ratio. Modern techniquin 'AB' blood group individua (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations tion (4) Adaptive radiation
Q.122 Ans. Sol. Q.123 Ans. Sol. Q.124	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fir I ^A and I ^B present The process by w response to a corr (1) Natural select [2] Due to common of is known as conver	d as 'A phores le of : nd this togeth which o nmon c ion environ ergent	A' blood group : 'AB' blood sis reveals presence of (2) Incomplete domin a question in NCERT p er they both express the organisms with differen environmental challeng (2) Convergent evolu nmental changes differ- evolution.	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : ttion (3) Non-random evolut	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance arface of RBC is codominance similar phenotypic adaptations cion (4) Adaptive radiation boking feature. This phenomeno
Ans. Sol. Q.123 Ans. Sol.	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fir I ^A and I ^B present The process by w response to a corr (1) Natural select [2] Due to common of is known as conver	d as 'A phores le of : nd this togeth which o ion environ ergent	A' blood group : 'AB' blood sis reveals presence of (2) Incomplete domin a question in NCERT p er they both express the organisms with differen environmental challeng (2) Convergent evolu nmental changes differ- evolution.	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : tion (3) Non-random evolut ent animals develop similar lo	arface of RBC is codominance similar phenotypic adaptations tion (4) Adaptive radiation poking feature. This phenomeno
Ans. Sol. Q.123 Ans. Sol.	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fin I ^A and I ^B present The process by w response to a corr (1) Natural select [2] Due to common of is known as convert	d as 'A phores le of : nd this togeth which o ion environ ergent	A' blood group : 'AB' blo sis reveals presence of (2) Incomplete domin s question in NCERT p er they both express the organisms with differen environmental challeng (2) Convergent evolu nmental changes different evolution.	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : tion (3) Non-random evolut ent animals develop similar lo	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations cion (4) Adaptive radiation boking feature. This phenomeno ed by :
Ans. Sol. Q.123 Ans. Sol. Q.124	could be classifie of protein electro This is an exampl (1) Codominance [1] Students may fir I ^A and I ^B present The process by w response to a corr (1) Natural select [2] Due to common of is known as conver The tendency of p (1) random matin [4]	d as 'A phores le of : nd this togeth which o ion environ ergent popula	A' blood group : 'AB' blo sis reveals presence of (2) Incomplete domin s question in NCERT p er they both express the organisms with differen environmental challeng (2) Convergent evolu nmental changes different evolution.	bod group : 'B' blood group in both 'A' and 'B' type proteins nance (3) Partial dominance page 77 bir own type of sugar on the su t evolutionary history evolve s e is called : ttion (3) Non-random evolut ent animals develop similar lo c equilibrium may be disturbe (3) lack of mutations	 1 : 2 : 1 ratio. Modern technique in 'AB' blood group individual (4) Complete dominance urface of RBC is codominance similar phenotypic adaptations cion (4) Adaptive radiation boking feature. This phenomeno ed by :

 Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant labecause of: (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (5) Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	<u> </u>	CODE-W	NEET EXAMIN	ATION 2013	Image: Second system Image: Second system Image: Second system Image: Second system		
 (1) Maize (2) Cotton (3) Brinjal (4) Soybean Ans. [2] Sol. Bt cotton is commonly grown Bt crop of India. Q.126 A good product of citric acid is : (1) Aspergillus (2) Pseudomonas (3) Clostridium (4) Saccharomyces Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of or, egalactosidase or z-gene of lac-operon in plasmid of E. Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Eluo-green algae (4) Saprophytic fung Ans. [1] 	Q.125	Which of the follow	ing Bt crops is being grov	vn in India by the farmers?			
Sol. Bt cotton is commonly grown Bt crop of India. Q.126 A good product of citric acid is : (1) Aspergillus (2) Pseudomonas (3) Clostridium (4) Saccharomyces Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant I because of : (1) Non-recombinant bacteria containing betagalactosidase<!--</td--><td></td><td></td><td></td><td>-</td><td>(4) Soybean</td>				-	(4) Soybean		
 Q.126 A good product of citric acid is : (1) Aspergillus (2) Pseudomonas (3) Clostridium (4) Saccharomyces Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betaglalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme (this enzyme convert x-gel chromogen into blue color to blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Ans.	[2]					
 (1) Aspergillus (2) Pseudomonas (3) Clostridium (4) Saccharomyces Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant laceause of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (3) Insertional inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colories. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Sol.	Bt cotton is common	nly grown Bt crop of India	1.			
 (1) Aspergillus (2) Pseudomonas (3) Clostridium (4) Saccharomyces Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant l because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (3) Insertional inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 							
 Ans. [1] Sol. Students may find this question in CP Sheet : Plant Diversity <i>Aspergilus niger</i> is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (3) Insertional inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Q.126	A good product of c	itric acid is :				
Sol. Students may find this question in CP Sheet : Plant Diversity Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional ing type of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung		(1) Aspergillus	(2) Pseudomonas	(3) Clostridium	(4) Saccharomyces		
Aspergilus niger is used in formation of citric acid Q.127 DNA fragments generated by the restriction endonucleases in a chemical reaction can be separated by (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α -galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α -galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be presen							
 (1) Centrifugation (2) Polymerase chain reaction (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of: (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color blue color blue color is enzyme this reaction does not take place so recombinant bacteria appears white in corr blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Sol.	-	-	-			
 (3) Electrophoresis (4) Restriction mapping Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in con blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Q.127	DNA fragments gen	erated by the restriction er	ndonucleases in a chemical	reaction can be separated by :		
 Ans. [3] Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 		(1) Centrifugation		(2) Polymerase chai	in reaction		
 Sol. Students may find this question in NCERT page 198 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant lbecause of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (3) Issertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1] 		(3) Electrophoresis		(4) Restriction map	ping		
 DNA fragment generated by restriction endonuclease is separated by Gel-electrophoresis. Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (5) Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Ans.	[3]					
 Q.128 Which of the following is not corretly matched for the organism and its cell wall degrading enzyme ? (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (3) Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Sol.	-	-				
 (1) Bacteria-Lysozyme (2) Plant cells- Cellulase (3) Algae-Methylase (4) Fungi - Chitinase Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (5) Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 		DNA fragment gene	erated by restriction endon	uclease is separated by Gel-	-electrophoresis.		
 Ans. [3] Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Q.128	Which of the follow	ing is not corretly matche	d for the organism and its co	ell wall degrading enzyme?		
 Sol. Methylase enzyme is used for methylation. Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant l because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 		(1) Bacteria-Lysozy	me (2) Plant cells- Cellu	lase (3) Algae-Methylas	e (4) Fungi - Chitinase		
 Q.129 The colonies of recombinat bacteria appear white in contrast to blue colonies of non-recombinant because of: Non-recombinant bacteria containing betagalactosidase Insertional inactivation of alphagalactosidase in non-recombinant bacteria Inactivation of glycosidase enzyme in recombinant bacteria Inactivation of glycosidase enzyme in recombinant bacteria Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? Archaebacteria Eubacteria Eubacteria Blue-green algae Saprophytic fung 	Ans.	[3]					
 because of : (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Sol.	Methylase enzyme i	s used for methylation.				
 (1) Non-recombinant bacteria containing betagalactosidase (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Q.129		ombinat bacteria appear	white in contrast to blue co	plonies of non-recombinant bacter		
 (2) Insertional inactivation of alphagalactosidase in non-recombinant bacteria (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 			t hactoria containing heta	alactoridase			
 (3) Insertional inactivation of alphagalactosidase in recombinant bacteria (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 				-	teria		
 (4) Inactivation of glycosidase enzyme in recombinant bacteria Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1]							
 Ans. [3] Sol. Students may find this question in NCERT page 200 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1]							
 If insertion inactivation of α-galactosidase or z-gene of lac-operon in plasmid of E.Coli take place the not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue colo to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in cor blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung 	Ans.	C C	5				
 not produce α-galactosidase or lactase enzyme (this enzyme convert x-gel chromogen into blue color to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in corr blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1] 	Sol.	Students may find	this question in NCERT	page 200			
 to lack of this enzyme this reaction does not take place so recombinant bacteria appears white in corblue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1] 		If insertion inactivat	ion of α -galactosidase or	z-gene of lac-operon in plas	smid of E.Coli take place then it wi		
 blue colonies. Q.130 Which of the following are likely to be present in deep sea water ? (1) Archaebacteria (2) Eubacteria (3) Blue-green algae (4) Saprophytic fung Ans. [1] 		not produce α -galac	tosidase or lactase enzym	ne (this enzyme convert x-g	gel chromogen into blue colour) du		
(1) Archaebacteria(2) Eubacteria(3) Blue-green algae(4) Saprophytic fungAns.[1]		•	ne this reaction does not	take place so recombinant l	bacteria appears white in contrast		
(1) Archaebacteria(2) Eubacteria(3) Blue-green algae(4) Saprophytic fungAns.[1]	0 130	W/L:.LC.(1C.1)	ing and likely ()				
Ans. [1]	Q.130		• • •	-	(1) Conventing for ai		
	Anc		(2) Eubacteria	(3) Blue-green algae	e (4) Saprophytic fungi		
	Ans. Sol.		a light is reach the group	ehacteria like sulnhur hoot	eria methanomonas are present ar		
their nutritional category is chemoautotrophs or chemosynthetic bacteria.	501.	-	-	-	-		

	CODE-W	NEET EXAMINA	TION 2013	CAREER POINT	
Q.131	Natural reservoir of p	hosphorus is :			
	(1) Sea water	(2) Animal bones	(3) Rock	(4) Fossils	
Ans.	[3]				
Sol.	•	-	Ecology Eng. Page No. 104		
	Phosphorous cycle is	sedimentary cycle whose	reservoir lies in Rocks and Sed	iments	
Q.132	Secondary productivi	ty is rate of formation of n	ew organic matter by :		
-	(1) Producer	(2) Parasite	(3) Consumer	(4) Decomposer	
Ans.	[3]				
Sol.	Students may find the	his question in CP Sheet 1	Ecology Page NO. 95		
	Secondary productivi	ty is biomass assimilated b	by consumers.		
Q.133	Which one of the foll	owing is not used for ex si	tu plant conservation?		
	(1) Field gene banks	(2) Seed banks	(3) Shifting cultivation	(4) Botanical Gardens	
Ans.	[3]				
Sol.	-	-	Ecology Eng. Page No. 96		
	Shifting cultivation o	r Jhum cultivation is a kind	d of deforestation not conservat	tion.	
Q.134	Kyoto-Protocol was	endorsed at :			
-	(1) CoP-3	(2) CoP-5	(3) CoP-6	(4) CoP-4	
Ans.	[1]				
Sol.	Kyoto protocol was e	ndorsed at CoP-3			
	CoP – Confrence of I	Parties occurs before and a	fter the endorsement of kyoto p	protocol.	
	CoP-1 : held at Berlin	n (Germany) also known as	s Berlin mendeate in 1995.		
	CoP-2 : held at Geneva (Switzerland) also known as Ministerial Declaration.				
	Cop-3 : held at kyoto	, (Japan) in 1997 endorsed	kyoto protocol.		
Q.135	Which of the following	ng represent maximum nur	nber of species among global b	biodiversity?	
	(1) Algae	(2) Lichens	(3) Fungi	(4) Mosses and Ferns	
Ans.	[3]				
Sol.	Students may find t	his question in CP Sheet	Ecology English Page No. 140)	
	Fungi has highest spe	cies diversity among all pl	ant groups.		

Q.136 Match the name of the animal (Column I), with one characteristics (Column II), and the phylum/class (column III) to which it belongs :

	Column I	Column II	Column III
(1)	Petromyzon	ectoparasite	Cyclostomata
(2)	Ichthyophis	terrestrial	Reptilia
(3)	Limulus	body covered by chitinous exoskeleton	Pisces
(4)	Adamsia	radially symmetrical	Porifera

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W NEET E	XAMINATION 2013		CAREER POINT
Ans. Sol.	[1] Students may find this question in O Petromyzone is a vertebrate belongin an ectoparasite on merine fishes & tur	g to cyclostomata (cyclo = Rou	unded, Stom	na = mouth) They remain as
Q.137	Which of the following are correctly i (1) Flying fish, cuttlefish, silverfish – (2) Centipede, millipede, spider, scorp (3) House fly, butterfly, tsetsefly, silv (4) Spiny anteater, sea urchin, sea cuc	Pisces ion-Insecta erfish-Insecta	konomic clas	ssification ?
Ans. Sol.	[3]Students may find this question in (House fly, butterfly, tsetse fly, silverf	CP Sheet : Page 37		
Q.138	Which group of animals belong to the (1) Malarial parasite, <i>Amoeba</i> , Mosqu (3) Prawn, Scorpion, <i>Locusta</i>	1 5		
Ans. Sol.	[3] Students may find this question in (Prawn, Scorpion & Locusta all belong	8		
Q.139	One of the representatives of Phylum (1) cuttlefish (2) silverfis	-		(4) flying fish
Ans. Sol.	[2] Students may find this question in (Silverfish (Book-worm) belongs is ph	CP Sheet : Page 36-37		
Q.140	The H-zone in the skeletal muscle fib (1) the absence of myofibrils in the ce (2) the central gap between myosin fi (3) the central gap between actin filar (4) extension of myosin filaments in t	ntral portion of A-band aments in the A-band eents extending through myosin		n the A-band
Ans. Sol.	 [3] Students may find this question in CP Sheet : animal physiology-I on Page 43 The edges of thin filament (Actin) on either side of thick filaments (myosin) partially overlap the free ends of the thick filaments (myosin) leaving the centralpart of thick filament (myosin). This central part of thick filament (myosin), not overlapped by thin filaments (Actin) is called the 'H'-zone. 			
Q.141	What external changes are visible after (1) Mandibles become harder (2) Both fore wings and hind wings d	(2) Anal cerci d	evelop	
Ans. Sol.	(3) Both fore wings and hind wings d[3]Students may find this question in the next to last nymphal stage has with	P Sheet : lower animal on pa	ge No. 101	ngs.

	CODE-W NEET EXAMINATI	ON 2013		
Q.142	The Golgi complex plays a major role :			
	(1) in trapping the light and transforming it into chemical energy			
	(2) in digensting proteins and carbohydrates			
	(3) as energy transferring organelles			
	(4) in post translational modification of proteins and glycosidation of lipids			
Ans.	[4]			

Sol. Students may find this question in CP Sheet : Cell Biology

Golgi complex is involved in glycosidation of protein and lipid and formation of glycolipid and glycoprotein.

Q.143 Which one of the following organelle in the figure correctly matches with its function ?

- (1) Rough endopolasmic reticulum, formation of glycoproteins
- (2) Golgi apparatus, protein synthesis
- (3) Golgi apparatus, formation of glycolipids
- (4) Rough endoplasmic reticulum, protein synthesis
- Ans. [4]

Sol. Students may find this question in CP Sheet : Cell Biology page no. 24 & 26 Given figure is RER, which is involved in protein synthesis

Q.144 Macro molecule chitin is :

- (1) nitrogen containing polysaccharide
- (2) phosphorus containing polysaccharide
- (3) sulphur containing polysaccharide
- (4) simple polysaccharide

Ans. [1]

Sol. Students may find this question in NCERT XIth Class page 149

Chitin is polymer of N-acetyl galactosamine (NAGA) so it is Nitrogen containing polysaccharide

 $Q.145 \quad \text{The essential chemical components of many coenzymes are:} \\$

(1) Proteins (2) Nucleic acids (3) Carbohydrates (4) Vitamins

Ans. [4]

Sol. Students may find this question in CP Sheet : Plant physiology page no. 119

Coenzymes are loosely attached organic parts of conjugated enzymes which are generally derivatives of vitamins.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CODE-W

NEET EXAMINATION 2013

CAREER POINT

P

Q.146 A stage in cell division is shown in the figure. Select the answer which gives correct identification of the stage with its characteristics.

(1)	Telophase	nuclear envelop reforms, golgi complex reforms
(2)	Late anaphase	chromosomes move away from equatorial plate, golgi complex not present
(3)	Cytokinesis	cell plate formed, mitochondria distributed between two daughter cells
(4)	Telophase	endoplasmic reticulum and nucleolus not reformed yet
[1]		

Ans.

Sol. Students may find this question in CP Sheet : Cell Biology page no. 55

Given figure is telophase stage in which nuclear envelope and golgi complex is reformed.

Q.147 Select the correct match of the digested products in humans given in colum I with their absorption site and mechanism in column II.

	Column I	Column II
(1)	Glycine, glucose	small intestine, active
(2)	Fructose, Na ⁺	small intestine, passive absorption
(3)	Glycerol, fatty acids	duodenum, move as chilomicrons
(4)	Cholesterol, maltose	large intestine, active absorption

Ans.

[1]

Sol. Reference - CP Study material Animal physiology-I on page no. 156

Various nutrients like amino acids, glucose, electrolytes like Na⁺ are absorbed into the blood by Active transport.

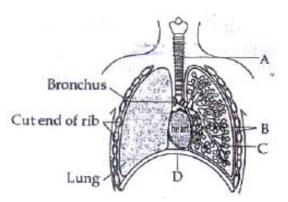
Q.148 A pregnant female delivers a baby who suffers from stunted growth, mental retardation, low intelligence quotient and abnormal skin.

This is the result of :

- (1) Deficiency of iodine in diet (
- (3) Cancer of the thyroid gland
- (2) Low secretion of growth hormone
- (4) Over secretion of pars distalis

Ans. [1]

Sol. Students may find this question in CP Sheet : Animal physiology-II on page no. 152

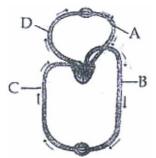

Hypothyroidism during pregnancy causes defective development and maturation of the growing baby leading to stunted growth, mental retardation low intelligence quotient abnormal skin.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CO	D	E-	W

NEET EXAMINATION 2013

Q.149 The figure shows a diagrammatic view of human respiratory system with labels A, B, C and D. Select the option which gives correct identification and main function and / or characteristic.



- (1) A-trachea long tube supported by complete cartilaginous rings for conducting inspired air
- (2) B-pleural membrane surround ribs on both sides to provide cushion against rubbing.
- (3) C-Alveoli thin walled vascular bag like structures for exchange of gases.
- (4) D-Lower end of lungs diaphragm pulls it down during inspiration.
- Ans. [3]

Sol. Students may find this question in CP Sheet : Page 54-55

Alveoli in lungs are thin walled air sacs where gaseous exchange takes place

Q.150 Figure shows schematic plant of blood circulation in humans with labels A to D. Identify the label and give its function/s.

- (1) A-Pulmonary vein-takes impure blood from body parts, $PO_2 = 60 \text{ mm Hg}$
- (2) B-Pulmonary artery takes blood from heart to lungs, $PO_2 = 90 \text{ mm Hg}$
- (3) C-Vena Cava-takes blood from body parts to right auricle, $PCO_2 = 45 \text{ mm Hg}$
- (4) D-Dorsal aorta takes blood from heart to body parts, $PO_2 = 95 \text{ mm Hg}$
- Ans.

[3]

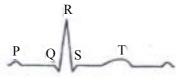
Sol. Students may find this question in CP Sheet : Page No. 88

Vena Cava takes blood from to body parts to right auricle. Partial pressure of CO_2 is 45 mmHg Hg under which CO_2 is taken form tissues.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

44 / 51

CAREER POINT


Ø

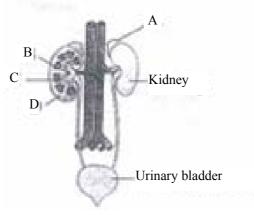
CODE-W

NEET EXAMINATION 2013

CAREER POINT

Q.151 The diagram given here is the standard ECG of a normal person. The P-wave represents the :

(1) Contraction of both the atria


(3) Beginning of the systole

(2) Initiation of the ventricular contraction(4) End of systole

Ø

Ans. [1]

- Sol. Students may find this question in CP Sheet : Animal physiology Page 102 P wave in an ECG shows contraction of both the atria
- Q.152 Figure shows human urinary system with structures labeled A to D. Select option which correctly identifies them and gives their characteristics and/or functions.

(1) A-Adrenal gland-located at the anterior part of Kidney. Secrete Catecholamines which stimulate glycogen breakdown

(2) B-Pelvis-broad funnel shaped space inner to hilum, directly connected to loops of Henle.

(3) C-Medulla-inner zone of kidney and contains complete nephrons.

(4) D-Cortex-outer part of kidney and do not contain any part of nephrons.

Ans. [1]

Sol. Students may find this question in CP Sheet : Animal physiology Page – 159

In the given answer function of adrenal gland is correctly given that it releases adrenaline & nor adrenaline (collectively known as catecholamine) that stimulates glycogen breakdown during emergencies.

- Q.153 Select the correct statement with respect to locomotion in humans :
 - (1) A decreased level of progesterone causes osteoporosis in old people.
 - (2) Accumulation of uric acid crystals in joints causes their inflammation.
 - (3) The vertebral column has 10 thoracic vertebrae.
 - (4) The joint between adjacent vertebrae is a fibrous joint.
- Ans. [2]

Sol. Students may find this question in CP Sheet : Animal physiology-IPage – 119

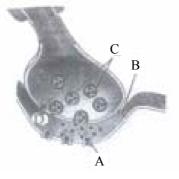
Gouty arthritis is cansed by excessive formation of uric acid. It gets deposited in joints as monosodium salts.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CODE-W	NEET EXAMINATION 2013	ø	CAREER POINT
		CAREER POINT	

Q.154 The characteristics and an example of a synovial joint in humans is :

	Characteristics	Examples
(1)	Fluid cartilage between two bones, limited movements	Knee joint
(2)	Fluid filled between two joints, provides cushion	Skull bones
(3)	Fluid filled synovial cavity between two bones	Joint between atlas and axis
(4)	Lymph filled between two bones, limited movement	Gliding joint between carpals

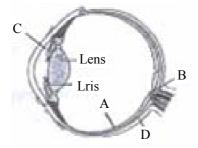

Ans.

[3]

Sol. Students may find this question in CP Sheet : Animal physiology-I Page – 115

In between two bones a space is found called synovial space or cavity this space provides free movement to the bone.

Q.155 A diagram showing axon terminal and synapse is given. Identify correctly at least two of A-D.



(1) A-Receptor ; C-Synaptic vesicles

(3) A-Neurotransmitter ; B- Synaptic cleft

(2) B-Synaptic connection ; D-K⁺
(4) C-Neurotransmitter ; D-Ca⁺⁺

- Ans. [1]
- Sol. Students may find this question in CP Sheet at : Animal Physiology-II on page no 205 In this diagramatic question 'A' label is correct which represent receptor of neurotrans mitter and C lable represent synaptic vesicle
- Q.156 Parts A, B, C and D of the human eye are shown in the diagram. Select the option which gives correct identification along with its functions/characteristics :

- (1) A-Retina-contains photo receptors-rods and cones.
- (2) B-Blind spot-has only a few rods and cones
- (3) C-Aqueous chamber- reflects the light which does not pass through the lens
- (4) D-choroid its anterior part forms ciliary body

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W NEET EXAMINATION 2013 SAREER POINT					
Ans.	[1]					
Sol.	Students may find this question in CP Sheet at : Animal physiology-II on page no 263					
	In this diagramatic question 'A' label is correct with its function / Character because of Retina contain					
	photosensory receptor – rod and cones					
Q.157	Which of the following statements is correct in relation to the endocrine system ?					
	(1) Adenohypophysis is under direct neural regulation of the hypothalamus					
	(2) Organs in the body like gastrointestinal tract, heart, kidney and liver do not produce any hormones					
	(3) Non-nutrient chemicals produced by the body in trace amount that act as intercellular messenger are					
	known as hormones					
	(4) Releasing and inhibitory hormones are produced by the pituitary gland					
Ans.	[3]					
Sol.	Students may find this question in CP Sheet at : Animal physiology-II on page no. 134					
	Hormones are non-nutritional chemical substances which produced by body / glands in tracess					

Q.158 Select the answer which correctly matches the endocrine gland with the hormone it secretes and its function/deficiency symptom :

	Endocrine gland	Hormone	Function/deficiency symptoms
(1)	Anterior pituitary	Oxytocin	Stimulates uterus contraction during child
			birth
(2)	Posterior pituitary	Growth Hormone (GH)	Oversecretion stimulates abnormal growth
(3)	Thyroid gland	Thyroxine	Lack of iodine in diet results in goitre
(4)	Corpus luteum	Testosterone	stimulates spermatogenesis

Ans. [3]

Sol. Students may find this question in CP Sheet : Animal physiology-II Page – 148

Thyroid gland synthesis thyroxine with the help of iodine and lack of iodine in diet results in goitre

- **Q.159** What is the correct sequence of sperm formation ?
 - (1) Spermatid, spermatocyte, spermatogonia, spermatozoa
 - (2) Spermatogonia, spermatocyte, spermatozoa, spermatid
 - (3) Spermatogonia, spermatozoa, spermatocyte, spermatid
 - (4) Spermatogonia, spermatocyte, spermatid, spermatozoa
- Ans. [4]

Sol. Students may find this question in CP Sheet : Reproductive system Page – 49

The correct sequence of spermatogenesis is spermatogonia, spermatocyte, spermatid & spermatozoa

- Q.160 Menstrual flow occurs due to lack of :
 - (1) Progesterone (2) FSH (3) Oxytocin (4) Vasopressin
- Ans. [1]

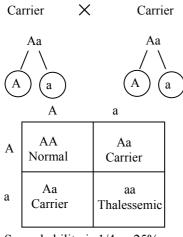
Sol. Students may find this question in CP Sheet : Reproductive system Page – 20-21

Fall in the level of progesterone results in meustrual flow due to breaking of the blood vessels of uterine wall

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W		NEET E		TION 2013		CAREER PO	INT
Q.161	Which one of the following is not the function of placenta ? it :(1) facilitates supply of oxygen and nutrients to embryo(2) secretes estrogen							
	(3) Facilitates ren(4) Secretes oxyte	noval of c			ste material fror	n embryo		
Ans. Sol.	 [4] Students may find this question in CP Sheet : Reproductive system Page – 28 Oxytocin is released from the neurohypophysis of pituitary gland at the time of child birth 							
*Q.162	One of the legal r							
	(1) abortion by ta(2) by abstaining(3) by having coi(4) by a premature	from coit tus at the	us from da time of day	ty 10 to 17 o y break	of the menstrual	cycle		
Ans. Sol.	 (4) by a premature ejaculation during coitus [1] Students may find this question in CP Sheet : Reproductive system Page – 94 MTP can be non surgically performed on prescription of mifepristone+Prostaglandins on the prescription of registered medical practitioner under his supervision. This is legal method of termination of pregnancy. Duration of menstrual cycle in all female is not fixed hence ovulation can occur anytime between 8 to 19th day hence this method of abstinence is not practically possible for birth control. 							
Q.163	Which of the foll (1) Klinefelter sy (3) Down syndrom	ndrome	nnot be det	tected in a d	eveloping foetu (2) Sex of t (4) jaundic	the foetus	esis ?	
Ans. Sol.	[4] Jaundice cant be		by amnioce	entesis.	(1) juunate	•		
Q.164 Ans.	Artificial insemin (1) transfer of spe (2) transfer of spe (3) artificial intro (4) introduction of [3]	erms of a f erms of hu duction o of sperms	healthy dou usband to a f sperms of of a health	a test tube co f a healthy o y donor dire	ontaining ova lonor into the va ectly into the ov	agina ary		
Sol.	Students may fin Artificial insemin						96 poor into the vagina.	
Q.165	(1) incomplete do(3) inheritance of	ominance		a cross in w	which the F ₁ gen (2) law of ((4) co-dom	dominance	es both the parents ?	?
Ans. Sol.	[2] This is codominace but question is concern with mendel idea so it depicted with mendel idea of law or dominance.					of law of		
Q.166	 The incorrect statement with regard to Haemophilia is : (1) It is a sex-linked disease (2) It is a recessive disease (3) It is a dominant disease (4) A single protein involved in the clotting of blood is affected 							
Ans. Sol.	[3] Students may fin			-				
501.	Haemophilia is se	-			age 110, 07			
	CAREER F	POINT, (P Tower,	Road No.1,	IPIA, Kota (Raj.)	Ph.: 0744-3040	0000	

Website : www.careerpointgroup.com, Email: info@careerpointgroup.com


CODE-W

NEET EXAMINATION 2013

CAREER POINT

P

- Q.167 If both parents are carriers for thalessemia, which is an autosomal recessive disorder, what are the chances of pregnancy resulting in an affected child? (1) no chance (2) 50%(3) 25% (4) 100%
- Ans. [3]
- Sol. Thalessemia is autosomal recessive disease if both parent are carrier then their genotype will be

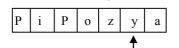
So probability is 1/4 or 25%

- Q.168 The diagram shows an important concept in the genetic implication of DNA. Fill in the blanks A to C. $(DNA \xrightarrow{A} mRNA \xrightarrow{B} protein \xrightarrow{Proposed by}$

 - (1) A-transcription B-replication C-James Watson
 - (2) A-translation B-transcription C-Erevin Chargaff
 - (3) A-transcription B-translation C-Francis Crick
 - (4) A-translation B-extension C-Rosalind Franklin
- Ans. [3]

Sol. Students may find this question in NCERT Page No. 98

This is central dogma in molecular biology proposed by Francis Crick


- Q.169 Which enzyme/s will be produced in a cell in which there is a non-sense mutation in the lac Y gene ?
 - (1) b-galactosidase

(2) Lactose permease

(3) Transacetylase

(4) Lactose permease and transacetylase

- Ans. [1]
- Non sense mutation is point mutation which result in premature stop codon so transcription stop there. Sol.

Non sense mutation take place here then y and a gene will not transcribe so only β-galactosidase gene (z-gene) will transcribe.

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-W	NEET EXAMINAT	ION 2013	CAREER POINT			
Q.170	According to Darwir	, the organic evolution is du	e to -				
	(1) Intraspecific competition						
	(2) Interspecific competition						
	(3) Competition within closely related species						
	(4) Reduced feeding efficiency in one species due to the presence of interfering species.						
Ans.	[2]						
Sol.	Students may find this question in CP Sheet at : Origin & Evolution of Life Page - 31						
	According to Darwinism competition between two different species is the key factor for organic evolution						
	Since it results in div	ergent evolution.					
Q.171	The eye of octopus and eye of cat show different patterns of structure, yet they perform similar function, This						
	is an example of :						
	(1) Homologous organs that have evolved due to convergent evolution(2) Homologous organs that have evolved due to divergent evolution						
	• • •		•				
	(3) Analogous organs that have evolved due to convergent evolution						
A	(4) Analogous organs that have evolved due to divergent evolution						
Ans.	[3] Students may find t	his suggion in CD Shoot .	Faalaan Daga Na 21				
Sol.	Students may find this question in CP Sheet : Ecology Page No. – 31 Eye of octopus & cat are analogous organs since they are different in structure but perform same function.						
	Eye of octopus & ca	are analogous organs since	they are different in subclui	e out perform same function.			
Q.172	Infection of Ascaris						
		ntaining eggs of Ascaris	(2) eating imperfectly co	ooked pork			
	(3) Tse-tse fly		(4) mosquito bite				
Ans.	[1]						
Sol.	Students may find this question in CP Sheet : Lower Animals Page No. 38						
	Contaminated water and soil (with eggs of Ascaris) is the source of infection with Ascasis						
Q.173	The cell-mediated in	munity inside the human bo	dy is carried out by :				
	(1) T- lymphocytes	(2) B-lymphocytes	(3) Thrombocytes	(4) Erythrocytes			
Ans.	[1]						
Sol.	Students may find this question in NCERT Page No. 151						
	T-Lymphocytes mddiate C.M.I (cell-mediated immunity.)						
Q.174	In plant breeding programmes, the entire collection (of plants/seeds) having all the diverse alleles for all						
	genes in a given crop is called :						
	(1) selection of super		(2) cross-hybridisation a	among the selected parents			
	(3) evaluation and se		(4) germplasm collectio				
Ans.	[4]	-					
Sol.	Students may find this question in CP Sheet : Reproduction in flowering plant and Economic Botany						
	Eng. Page – 84						
	Entire collection of plants / seeds having all diverse alleles for all genes in a given crop is called as						
	germplasm collection		C				

	CODE-W	NEET EXAMINAT	10N 2013	Image: Career Point		
Q.175	(1) methane, hydrogens	nt, biogases are produced sulphide, carbon dioxide nethane, sulphur dioxide	which include : (2) methane, oxygen, (4) hydrogensulphide			
Ans. Sol.	[1] Students may find this question in CP Class notes : Ecology During sewage treatment in secondary treatment the biogas is produced in anaerotric sludge digestor have anaerobic bacteria which produce gases like CO ₂ , H ₂ S, CH ₄					
Q.176	A biologist studied the population of rats in a barn, He found that the average natality was 250, average mortality 240, immigration 20 and emigration 30. The net increase in population is :					
Ans. Sol.	(1) 10 (2) 15 (3) 05 (4) zero [4] Students may find this question in CP Sheet : Ecology Eng. Md Page – 52 Natality = 250, Immigration = 20 Mortality = 240, Emigration = 30 Increase in Popolution size P.D = [(Natality + Immigration) – (Mortality + Emigration)] = [(250 + 20) – (240 + 30)] = 0					
Ans.	 Which one of the following processes during decomposition is correctly described ? (1) Fragmentation – Carried out by organisms such as earthworm (2) Humification – Leads to the accumulation of a dark coloured substance humus which undergoes microbial action at a very fast rate (3) Catabolism – Last step in the decomposition under fully anaerobic condition (4) Leaching – Water soluble inorganic nutrients rise to the top layers of soil 					
Sol.			Ecology Eng. Md. Page all fragments by detrivore			
Q.178	(1) Ectoparasitism	ne gets attached to the she (2) Symbiosis	ll lining of hermit crab. T (3) Commensalism	he association is : (4) Amensalism		
Ans. Sol.	ĩ	-	Ecology Eng. Md. Page mit crab is symbiosis as	-69 both live together for very long		
Q.179	 Global warming can be controlled by : (1) Reducing deforestation, cutting down use of fossil fuel (2) Reducing reforestation, increasing the use of fossil fuel (3) Increasing deforestation, slowing down the growth of human population (4) Increasing deforestation, reducing efficiency of energy usage 					
Ans. Sol.	[1] Students may find this question in CP Sheet : Ecology Eng. Md. Page – 180 Global warming can be controlled by reducing the concentration of green house gases which can be achived by decreasing deforestation and reducing the use of fossil fuels.					
Q.180	(1) 1975	control of pollution Act o (2) 1981	came into force in : (3)1985	(4) 1990		
Ans. Sol.	[2] Students may find this Air prevention and com		Ecology Eng. Md. Page	- 185		

 $Website: www.careerpointgroup.com, \ Email: info@careerpointgroup.com\\$