MATHEMATILS - II HEDMETRY

BASEIIN MAHARASHTRA STATE BIARI SYLLABIS

Tarǵet Publications Pvt. Ltod.

STD. X

Mathematics II Geometry

Sixth Edition: March 2016

Salient Features

- Written as per the new textbook.
- Exhaustive coverage of entire syllabus.
- Topic-wise distribution of all textual questions and practice problems at the beginning of every chapter
- Covers solutions to all textual exercises and problem set.
- Includes additional problems for practice.
- Indicative marks for all problems.
- Comprehensive solution to Question Bank.
- Constructions drawn with accurate measurements.
- Includes Board Question Papers of 2014, 2015 and March 2016.

Printed at: Repro India Ltd., Mumbai

Preface

Geometry is the mathematics of properties, measurement and relationships of points, lines, angles, surfaces and solids. It is widely used in the fields of science, engineering, computers, architecture etc. It is a vast subject dealing with the study of properties, definitions, theorems, areas, perimeter, angles, triangles, mensuration, co-ordinates, constructions etc.

The study of Geometry requires a deep and intrinsic understanding of concepts. Hence, to ease this task, we bring to you "Std. X: Geometry", a complete and thorough guide critically analysed and extensively drafted to boost the confidence of the students. The question answer format of this book helps the student to understand and grasp each and every concept thoroughly. The book is based on the new text book and covers the entire syllabus. At the beginning of every chapter, topic-wise distribution of all textual questions and practice problems has been provided for simpler understanding of different types of questions. The book contains answers to textual exercises, problems sets and Question bank. It also includes additional questions for practice. All the diagrams are neat and have proper labelling. The book has a unique feature that all the constructions are as per the scale. Another feature of the book is its layout which is attractive and inspires the student to read.

Marks are provided for each and every problem. However, marks mentioned are indicative and are subject to change as per Maharashtra State Board's discretion.

There is always room for improvement and hence we welcome all suggestions and regret any errors that may have occurred in the making of this book.

A book affects eternity; one can never tell where its influence stops.

> Best of luck to all the aspirants!

Yours' faithfully,
Publisher

MARKING SCHEME

Marking Scheme (for March 2014 exam and onwards)

Written Exam

Algebra	40 Marks	Time: 2 hrs.
Geometry	40 Marks	Time: 2 hrs.
* Internal Assessment	$\underline{20 \text { Marks }}$	
Total	$\underline{100 \text { Marks }}$	

* Internal Assessment Home Assignment:

Test of multiple choice question:

10 Marks

10 Marks

5-5 Home assignment for Algebra and Geometry of 10 marks each would be given. Marks obtained out of 100 would be converted to marks out of 10 .
Depending upon the entire syllabus, internal test for Algebra and Geometry with 20 marks each would be taken at the end of second semester. Marks obtained out of 40 would be converted to marks out of 10 .

ALGEBRA AND GEOMETRY

Mark Wise Distribution of Questions

	Marks	Marks with Option			
6 sub questions of 1 mark each:	Attempt any 5	05			
6 sub questions of 2 marks each: Attempt any 4	08	06			
5 sub questions of 3 marks each:	Attempt any 3	09			
3 sub questions of 4 marks each: Attempt any 2	08	12			
3 sub questions of 5 marks each: Attempt any 2	10	12			
Total:				$\mathbf{4 0}$	15

Weightage to Types of Questions

Sr. No.	Type of Questions	Marks	Percentage of Marks
1.	Very short answer	06	10
2.	Short answer	27	45
3.	Long answer	27	45
		$\mathbf{6 0}$	$\mathbf{1 0 0}$

Weightage to Objectives

Sr. No	Objectives	Algebra Percentage marks	Geometry Percentage marks
1.	Knowledge	15	15
2.	Understanding	15	15
3.	Application	60	50
4.	Skill	10	20
		100	100

Unit wise Distribution: Algebra

Sr. No.	Unit	Marks with option
1.	Arithmetic Progression	12
2.	Quadratic equations	12
3.	Linear equation in two variables	12
4.	Probability	10
5.	Statistics - I	06
6.	Statistics - II	08
		$\mathbf{6 0}$

Unit wise Distribution: Geometry

Sr.	Unit	Marks with option
No.		
1.	Similarity	12
2.	Circle	10
3.	Geometric Constructions	10
4.	Trigonometry	10
5.	Co-ordinate Geometry	08
6.	Mensuration	10
		$\mathbf{6 0}$

Contents

Sr. No.	Topic Name	Page No.
1	Similarity	1
2	Circle	55
3	Geometric Constructions	101
4	Trigonometry	142
5	Co-ordinate Geometry	166
6	Mensuration	195
7	Question Bank (Hot Problems)	224
	Model Question Paper - I	255
	Model Question Paper - II	257
	Board Question Paper : March 2014	259
	Board Question Paper : October 2014	261
	Board Question Paper : March 2015	263
	Board Question Paper : July 2015	265
	Board Question Paper : March 2016	267

01 Similarity

Type of Problems	Exercise	Q. Nos.
Properties of the Ratios of Areas of Two Triangles	1.1	Q.1, 2, 3, 4, 5, 6, 7
	Practice Problems (Based on Exercise 1.1)	Q.1, 2, 3
	Problem set-1	Q. 7 (iii.), 20
Basic Proportionality Theorem (B.P.T.) and Converse of B.P.T.	1.2	Q.1, 2, 6, 10
	Practice Problems (Based on Exercise 1.2)	Q.4, 5, 6, 10
	Problem set-1	Q. 6 (i.), 15, 18, 19, 21
Application of BPT (Property of Intercept made by Three Parallel lines on a Transversal and/or Property of an Angle Bisector of a Triangle)	1.2	Q.3, 4, 5, 7, 9
	Practice Problems (Based on Exercise 1.2)	Q.7, 8, 9
	Problem set-1	Q.16, 22
Similarity of Triangles	1.2	Q. 8
	1.3	Q.1, 2, 3, 4, 5, 6
	Practice Problems (Based on Exercise 1.3)	Q. $11,12,13,14,15$
	Problem set-1	$\begin{aligned} & \text { Q.1, 2, } 4 \text { (i., ii.), } 7 \text { (i., ii.), } 8,9,10,24, \\ & 25 \end{aligned}$
Areas of Similar Triangles	1.4	Q.1, 2, 3, 4, 5, 6
	Practice Problems (Based on Exercise 1.4)	Q. $16,17,18,19,20$
	Problem set-1	Q.3, 4(iii.), 5, 6(ii., iii.), 17, 23
Similarity in Right Angled Triangles and Property of Geometric Mean	1.5	Q.2, 6 (i.)
	Practice Problems (Based on Exercise 1.5)	Q. 22
	1.7	Q. 4
Pythagoras Theorem and Converse of Pythagoras Theorem	1.5	Q.1, 3, 4, 5, 6(ii.), 7, 8
	Practice Problems (Based on Exercise 1.5)	Q.21, 23, 24, 25
	1.6	Q.2, 4
	Problem set-1	Q.11, 12
Theorem of $30^{\circ}-60^{\circ}-90^{\circ}$Triangle, Converse of $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem and Theorem of $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle	1.6	Q.1, 3, 5, 6, 7
	Practice Problems (Based on Exercise 1.6)	Q.26, 27, 28, 29
Applications of Pythagoras Theorem	1.7	Q. 5
Apollonius Theorem	1.7	Q.1, 2, 3, 6
	Practice Problems (Based on Exercise 1.7)	Q.30, 31, 32
	Problem set-1	Q.13, 14

Concepts of Std. IX

Similarity of triangles

For a given one-to-one correspondence between the vertices of two triangles, if
i. their corresponding angles are congruent and
ii. their corresponding sides are in proportion then the correspondence is known as similarity and the two triangles are said to be similar.

In the figure, for correspondence $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$,
i. $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}, \angle \mathrm{C} \cong \angle \mathrm{R}$
ii. $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2}{3}, \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{6}{9}=\frac{2}{3}, \frac{\mathrm{AC}}{\mathrm{PR}}=\frac{4}{6}=\frac{2}{3}$
i.e., $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$

Hence, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are similar triangles and are symbolically written as $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Test of similarity of triangles

1. S-S-S test of similarity:

For a given one-to-one correspondence between the vertices of two triangles, the two triangles are similar if the sides of one triangle are proportional to the corresponding sides of the other triangle.
In the figure,

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{3}{6}=\frac{1}{2}, \frac{\mathrm{AC}}{\mathrm{PR}}=\frac{2}{4}=\frac{1}{2}
$$

$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
2. $\mathbf{A}-\mathbf{A}-\mathbf{A}$ test of similarity [$\mathbf{A}-\mathbf{A}$ test]:

For a given one-to-one correspondence between the vertices of two triangles, the two triangles are similar if the angles of one triangle are congruent to the corresponding angles of the other triangle.
In the figure,
if $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}, \angle \mathrm{C} \cong \angle \mathrm{R}$
then $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

---- [By S-S-S test of similarity]

---- [By A-A-A test of similarity]

Note: A-A-A test is verified same as A-A test of similarity.

3. S-A-S test of similarity:

For a given one-to-one correspondence between the vertices of two triangles, the two triangles are similar if two sides of a triangle are proportional to the two corresponding sides of the other triangle and the corresponding included angles are also congruent. In the figure,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{1}{3}, \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2}{6}=\frac{1}{3}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$ and $\angle \mathrm{B} \cong \angle \mathrm{Q}$
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

Converse of the test for similarity:

i. Converse of S-S-S test:

If two triangles are similar, then the corresponding sides are in proportion.
If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ then,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
---- [Corresponding sides of similar triangles]
ii. Converse of $\mathbf{A}-\mathbf{A}-\mathrm{A}$ test:

If two triangles are similar, then the corresponding angles are congruent.
If $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$, then $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle \mathrm{B} \cong \angle \mathrm{Q}$ and $\angle \mathrm{C} \cong \angle \mathrm{R} \quad---$ [Corresponding angles of similar triangles]
Note: 'Corresponding angles of similar triangles' can also be written as c.a.s.t.
'Corresponding sides of similar triangles' can also be written as c.s.s.t.

1.1 Properties of the ratios of areas of two triangles

Property - I

The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights.
[2 marks]
Given: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, seg $\mathrm{AD} \perp \operatorname{seg} \mathrm{BC}, \mathrm{B}-\mathrm{D}-\mathrm{C}$, seg PS \perp ray $R Q, S-Q-R$
To prove that: $\frac{A(\triangle \mathrm{ABC})}{A(\triangle \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AD}}{\mathrm{QR} \times \mathrm{PS}}$

Proof:

$$
\begin{align*}
& \mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD} \\
& \mathrm{~A}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS} \tag{ii}
\end{align*}
$$

---- (i)

Dividing (i) by (ii), we get
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AD}}{\mathrm{QR} \times \mathrm{PS}}$

For Understanding

When do you say the triangles have equal heights?
We can discuss this in three cases.

Case - I

In the adjoining figure, segments $A D$ and $P S$ are the corresponding heights of $\triangle A B C$ and $\triangle \mathrm{PQR}$ respectively.
If $\mathrm{AD}=\mathrm{PS}$, then $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are said to have equal heights.

Case - II

In the adjoining figure, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{XYZ}$ have their one vertex on one of the parallel lines and the other two vertices lie on the other parallel line. Hence the two triangles are said to lie between the same parallel lines and are said to have equal heights.

Case - III

In the adjoining figure, $\triangle A B C, \triangle A C D$ and $\triangle A B D$ have a common vertex A and the sides opposite to vertex A namely, BC, CD and BD respectively of these triangles lie on the same line. Hence, $\triangle A B C$, $\triangle A C D$ and $\triangle A B D$ are said to have equal heights and $B C, C D$ and
 BD are their respective bases.

Property - II

The ratio of areas of two triangles having equal base is equal to the ratio of their corresponding heights.

Example:

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$ have a common base BC .
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{\mathrm{AP}}{\mathrm{DQ}}$

Property - III

The ratio of areas of two triangles having equal height is equal to the ratio of their corresponding bases.

Example:

$\triangle \mathrm{ABC}, \triangle \mathrm{ACD}$ and $\triangle \mathrm{ABD}$ have a common vertex A and their sides opposite to vertex A namely, $\mathrm{BC}, \mathrm{CD}, \mathrm{BD}$ respectively lie on the same line. Hence they have equal heights. Here, AP is common height.
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ACD})}=\frac{\mathrm{BC}}{\mathrm{CD}}, \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ABD})}=\frac{\mathrm{BC}}{\mathrm{BD}}, \frac{\mathrm{A}(\triangle \mathrm{ACD})}{\mathrm{A}(\triangle \mathrm{ABD})}=\frac{\mathrm{CD}}{\mathrm{BD}}$

Property - IV

Areas of two triangles having equal bases and equal heights are equal.

Example:

$\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ have a common vertex A and their sides opposite to vertex A namely, BD and DC respectively lie on the same line. Hence the triangles have equal heights. Also their bases BD and DC are equal.

$$
\therefore \quad \mathrm{A}(\triangle \mathrm{ABD})=\mathrm{A}(\Delta \mathrm{ACD})
$$

Exercise 1.1

1. In the adjoining figure, seg $B E \perp \operatorname{seg} A B$ and $\operatorname{seg} B A \perp \operatorname{seg} A D$. If $B E=6$ and $A D=9$, find $\frac{A(\triangle A B E)}{A(\triangle B A D)} . \quad$ [Oct 14, July 15] [1 mark]

Solution:

$$
\begin{aligned}
& \frac{\mathrm{A}(\triangle \mathrm{ABE})}{\mathrm{A}(\triangle \mathrm{BAD})}=\frac{\mathrm{BE}}{\mathrm{AD}} \quad \text {---- } \begin{array}{l}
\text { [Ratio of areas of two triangles having equal base } \\
\text { is equal to the ratio of their corresponding heights.] }
\end{array} \\
\therefore \quad & \frac{\mathrm{A}(\triangle \mathrm{ABE})}{\mathrm{A}(\triangle \mathrm{BAD})}=\frac{6}{9} \\
\therefore \quad & \frac{\mathbf{A}(\Delta \mathbf{A B E})}{\mathbf{A}(\Delta \mathbf{B A D})}=\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

2. In the adjoining figure, seg $S P \perp$ side $Y K$ and seg YT \perp seg $S K$. If $S P=6, Y K=13, Y T=5$ and $T K=12$, then find $A(\Delta S Y K): A(\Delta Y T K)$.
[2 marks]

Solution:

$$
\begin{aligned}
& \frac{\mathrm{A}(\Delta \mathrm{SYK})}{\mathrm{A}(\Delta \mathrm{YTK})}=\frac{\mathrm{YK} \times \mathrm{SP}}{\mathrm{TK} \times \mathrm{YT}} \\
\therefore \quad & \frac{\mathrm{~A}(\Delta \mathrm{SYK})}{\mathrm{A}(\Delta \mathrm{YTK})}=\frac{13 \times 6}{12 \times 5} \\
\therefore \quad & \frac{\mathrm{~A}(\Delta \mathrm{SYK})}{\mathrm{A}(\Delta \mathrm{YTK})}=\frac{13}{10} \\
\therefore \quad & \mathbf{A}(\Delta \mathrm{SYK}): \mathbf{A}(\Delta Y \mathrm{YK})=\mathbf{1 3}: \mathbf{1 0}
\end{aligned}
$$

3. In the adjoining figure, $R P: P K=3: 2$, then
find the values of the following ratios:
i. $\quad \mathbf{A}(\Delta T R P): \mathbf{A}(\Delta T P K)$
iii. $\quad \mathbf{A}(\Delta T R P): \mathbf{A}(\Delta T R K)$
ii. $\quad \mathbf{A}(\Delta T R K): \mathbf{A}(\Delta T P K)$
ii. $\quad \mathbf{A}(\Delta \mathrm{TRK}): \mathbf{A}(\Delta \mathrm{TPK})$
$[$ Mar 14] [3 marks]

Solution:

RP : $\mathrm{PK}=3: 2$
Let the common multiple be x.
$\therefore \quad \mathrm{RP}=3 x, \mathrm{PK}=2 x$
$R K=R P+P K$
$\therefore \quad \mathrm{RK}=3 x+2 x$
$\therefore \quad \mathrm{RK}=5 x$
i. $\frac{\mathrm{A}(\Delta \mathrm{TRP})}{\mathrm{A}(\Delta \mathrm{TPK})}=\frac{\mathrm{RP}}{\mathrm{PK}}$
[Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights.]

---- [Given]
---- (i)
---- $[\mathrm{R}-\mathrm{P}-\mathrm{K}]$
---- (ii)
---- [Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.]
---- [From (i)]
ii. $\frac{\mathrm{A}(\Delta \mathrm{TRK})}{\mathrm{A}(\Delta \mathrm{TPK})}=\frac{\mathrm{RK}}{\mathrm{PK}}$
---- [Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.]
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{TRK})}{\mathrm{A}(\Delta \mathrm{TPK})}=\frac{5 x}{2 x}$
---- [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{TRK})}{\mathrm{A}(\Delta \mathrm{TPK})}=\frac{5}{2}$
$\therefore \quad \mathbf{A}(\Delta$ TRK $): \mathbf{A}(\Delta T P K)=5: 2$
iii. $\frac{A(\Delta T R P)}{A(\Delta T R K)}=\frac{R P}{R K}$
---- [Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.]
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{TRP})}{\mathrm{A}(\Delta \mathrm{TRK})}=\frac{3 x}{5 x}$
---- [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{TRP})}{\mathrm{A}(\Delta \mathrm{TRK})}=\frac{3}{5}$
$\therefore \quad \mathrm{A}(\Delta \mathrm{TRP}): \mathrm{A}(\Delta \mathrm{TRK})=3: 5$
4. The ratio of the areas of two triangles with the common base is $6 \mathbf{: 5}$. Height of the larger triangle is $\mathbf{9} \mathbf{~ c m}$. Then find the corresponding height of the smaller triangle.

Solution:

Let A_{1} and A_{2} be the areas of larger triangle and smaller triangle respectively and h_{1} and h_{2} be their corresponding heights.
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{6}{5}$
$\mathrm{h}_{1}=9$
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}$
$\therefore \quad \frac{6}{5}=\frac{9}{\mathrm{~h}_{2}}$
$\therefore \quad \mathrm{h}_{2}=\frac{5 \times 9}{6}$
$\therefore \quad \mathrm{h}_{2}=\frac{15}{2}$
$\therefore \quad \mathrm{h}_{2}=7.5 \mathrm{~cm}$
$\therefore \quad$ The corresponding height of the smaller triangle is $\mathbf{7 . 5} \mathbf{~ c m}$.
5. In the adjoining figure, seg $P R \perp \operatorname{seg} B C$, seg $A S \perp \operatorname{seg} B C$ and seg $\mathrm{QT} \perp$ seg BC. Find the following ratios: [3 marks]
i. $\frac{\mathbf{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ABC})}$
ii. $\frac{\mathbf{A}(\triangle \mathrm{ABS})}{\mathrm{A}(\triangle \mathrm{ASC})}$
iii. $\frac{\mathbf{A}(\triangle P R C)}{\mathbf{A}(\Delta B Q T)}$
iv. $\frac{A(\triangle B P R)}{A(\Delta C Q T)}$

Solution:

i. $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PBC})}=\frac{\mathbf{A S}}{\mathbf{P R}}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{ABS})}{\mathrm{A}(\triangle \mathrm{ASC})}=\frac{\mathbf{B S}}{\mathbf{S C}}$
iii. $\frac{\mathrm{A}(\triangle \mathrm{PRC})}{\mathrm{A}(\triangle \mathrm{BQT})}=\frac{\mathbf{R C} \times \mathbf{P R}}{\mathbf{B T} \times \mathbf{Q T}}$
iv. $\frac{\mathrm{A}(\Delta \mathrm{BPR})}{\mathrm{A}(\Delta \mathrm{CQT})}=\frac{\mathbf{B R} \times \mathbf{P R}}{\mathbf{C T} \times \mathbf{Q T}}$ equal to the ratio of their corresponding heights.] equal to the ratio of their corresponding bases.] product of their bases and corresponding heights.] product of their bases and corresponding heights.]
---- (i) [Given]
---- (ii) [Given]
---- [Ratio of the areas of two triangles having equal base is equal to the ratio of their corresponding heights.]
---- [From (i) and (ii)]

---- [Ratio of the areas of two triangles having equal bases is
---- [Ratio of the areas of two triangles having equal heights is
---- [Ratio of the areas of two triangles is equal to the ratio of
---- [Ratio of the areas of two triangles is equal to the ratio of
6. In the adjoining figure, seg $D H \perp \operatorname{seg} E F$ and seg GK $\perp \operatorname{seg} E F$. If $\mathrm{DH}=12 \mathrm{~cm}, \mathrm{GK}=20 \mathrm{~cm}$ and $\mathrm{A}(\triangle \mathrm{DEF})=300 \mathrm{~cm}^{2}$, then find
i. EF
ii. $\mathbf{A}(\Delta \mathrm{GEF})$
iii. A([DFGE) [3 marks]

Solution:

i. \quad Area of triangle $=\frac{1}{2} \times$ base \times height

$$
\therefore \quad \mathrm{A}(\triangle \mathrm{DEF})=\frac{1}{2} \times \mathrm{EF} \times \mathrm{DH}
$$

$$
\therefore \quad 300=\frac{1}{2} \times \mathrm{EF} \times 12
$$

---- [Substituting the given values]

$\therefore \quad 300=\mathrm{EF} \times 6$
$\therefore \quad \mathrm{EF}=\frac{300}{6}$
$\therefore \quad \mathbf{E F}=\mathbf{5 0} \mathbf{c m}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{DEF})}{\mathrm{A}(\triangle \mathrm{GEF})}=\frac{\mathrm{DH}}{\mathrm{GK}}$
$\therefore \quad \frac{300}{\mathrm{~A}(\Delta \mathrm{GEF})}=\frac{12}{20}$
$\therefore \quad 300 \times 20=12 \times \mathrm{A}(\Delta \mathrm{GEF})$
$\therefore \quad \frac{300 \times 20}{12}=\mathrm{A}(\Delta \mathrm{GEF})$
$\therefore \quad \mathrm{A}(\Delta \mathrm{GEF})=\frac{300 \times 20}{12}$
$\therefore \quad A(\triangle G E F)=500 \mathbf{c m}^{2}$
---- [Ratio of the areas of two triangles having equal bases is equal to the ratio of their corresponding heights.]
---- [Substituting the given values]
iii. $\mathrm{A}(\square \mathrm{DFGE})=\mathrm{A}(\triangle \mathrm{DEF})+\mathrm{A}(\triangle \mathrm{GEF}) \quad---$ [Area addition property]
$\therefore \quad \mathrm{A}(\square \mathrm{DFGE})=300+500$
$\therefore \quad A(\square D F G E)=800 \mathbf{c m}^{2}$
7. In the adjoining figure, seg ST $\|$ side QR . Find the following ratios. [3 marks]
i. $\frac{\mathbf{A}(\Delta \mathrm{PST})}{\mathrm{A}(\Delta \mathrm{QST})}$
ii. $\frac{\mathbf{A}(\Delta P S T)}{\mathbf{A}(\Delta R S T)}$
iii. $\frac{\mathbf{A}(\Delta Q S T)}{\mathbf{A}(\Delta R S T)}$

Solution:

i. $\frac{\mathrm{A}(\Delta \mathrm{PST})}{\mathrm{A}(\Delta \mathrm{QST})}=\frac{\mathbf{P S}}{\mathbf{Q S}} \quad[$ Ratio of the areas of two triangles having equal heights

ii. $\left.\frac{\mathrm{A}(\triangle \mathrm{PST})}{\mathrm{A}(\triangle \mathrm{RST})}=\frac{\mathbf{P T}}{\mathbf{T R}}\right\}$ is equal to the ratio of their corresponding bases.]
iii. $\quad \Delta \mathrm{QST}$ and $\Delta \mathrm{RST}$ lie between the same parallel lines ST and QR
$\therefore \quad$ Their heights are equal.
Also ST is the common base.
$\therefore \quad \mathrm{A}(\Delta \mathrm{QST})=\mathrm{A}(\Delta \mathrm{RST}) \quad---$ [Areas of two triangles having common base and equal heights
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{QST})}{\mathrm{A}(\Delta \mathrm{RST})}=\mathbf{1}$

1.2 Basic Proportionality Theorem (B.P.T)

If a line parallel to a side of a triangle intersects the other sides in two distinct points, then the line divides these sides in proportion.

Proof:

In $\triangle \mathrm{PMN}$ and $\triangle \mathrm{QMN}$, where $\mathrm{P}-\mathrm{M}-\mathrm{Q}$,
$\frac{\mathrm{A}(\Delta \mathrm{PMN})}{\mathrm{A}(\Delta \mathrm{QMN})}=\frac{\mathrm{PM}}{\mathrm{MQ}}$
In $\triangle \mathrm{PMN}$ and $\triangle \mathrm{RMN}$, where $\mathrm{P}-\mathrm{N}-\mathrm{R}$,
$\frac{\mathrm{A}(\triangle \mathrm{PMN})}{\mathrm{A}(\triangle \mathrm{RMN})}=\frac{\mathrm{PN}}{\mathrm{NR}}$
$\mathrm{A}(\Delta \mathrm{QMN})=\mathrm{A}(\Delta \mathrm{RMN})$
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{PMN})}{\mathrm{A}(\Delta \mathrm{QMN})}=\frac{\mathrm{A}(\Delta \mathrm{PMN})}{\mathrm{A}(\Delta \mathrm{RMN})}$
$\therefore \quad \frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{\mathrm{PN}}{\mathrm{NR}}$
---- (i) [Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.]
---- (ii) [Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.]
---- (iii) [Areas of two triangles having equal bases and equal heights are equal.]
---- (iv) [From (i), (ii) and (iii)]
---- [From (i), (ii) and (iv)]

Converse of Basic Proportionality Theorem:

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.
If line l intersects the side PQ and side PR of $\triangle \mathrm{PQR}$ in the points M and N respectively such that $\frac{P M}{M Q}=\frac{P N}{N R}$, then line $l \|$ side QR .

Applications of Basic Proportionality Theorem:

i. Property of intercepts made by three parallel lines on a transversal:

The ratio of the intercepts made on a transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same three parallel lines. [3 marks]

Given: line $l \|$ line $m \|$ line n
The transversals x and y intersect these parallel lines at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ respectively.
To Prove that: $\frac{A B}{B C}=\frac{P Q}{Q R}$
Construction: Draw seg AR to intersect line m at point H.
Proof:

$$
\begin{aligned}
& \text { In } \triangle \mathrm{ACR} \text {, } \\
& \text { seg BH \| side CR } \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AH}}{\mathrm{HR}} \\
& \text { In } \triangle \mathrm{ARP} \text {, } \\
& \text { seg HQ || side AP } \\
& \frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{\mathrm{RH}}{\mathrm{HA}} \\
& \therefore \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{AH}}{\mathrm{HR}} \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{PQ}}{\mathrm{QR}} \\
& \text {---- [Given] } \\
& \text {---- (i) [By B.P.T.] } \\
& \text {---- [Given] } \\
& \text {---- [By B.P.T.] } \\
& \text {---- (ii) [By invertendo] } \\
& \text {---- [From (i) and (ii)] }
\end{aligned}
$$

ii. Property of an angle bisector of a triangle:

In a triangle, the angle bisector divides the side opposite to the angle in the ratio of the remaining sides.
[Mar 15] [5 marks]
Given: In $\triangle \mathrm{ABC}$, ray AD bisects $\angle \mathrm{BAC}$
To Prove that: $\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
Construction: Draw a line parallel to ray AD , passing through point C . Extend BA to intersect the line at E.

Proof:

$$
\begin{array}{lll}
& \text { In } \triangle \mathrm{BEC}, \\
& \operatorname{seg} \mathrm{AD} \| \text { side } \mathrm{EC} \\
\therefore \quad & \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AE}} & \text {---- [By construction] } \\
& \text { line } \mathrm{AD} \| \text { line } \mathrm{EC} \text { on transversal } \mathrm{BE} & \\
\therefore \quad & \angle \mathrm{BAD} \cong \angle \mathrm{AEC} & \\
& \text { line } \mathrm{AD} \| \text { line } \mathrm{EC} \text { on transversal } \mathrm{AC} . & \\
\therefore \quad & \angle \mathrm{CAD} \cong \angle \mathrm{BC} \text { B.P.T.] (ii) [Corresponding angles] } \\
& \mathrm{Also}, \angle \mathrm{BAD} \cong \angle \mathrm{CAD} & --- \text { (iii) [Alternate angles] } \\
\therefore \quad & \angle \mathrm{AEC} \cong \angle \mathrm{ACE} & \text {---- (iv) [} \because \text { Ray AD bisects } \angle \mathrm{BAC}] \\
& \text {---- (v) [From (ii), (iii) and (iv)] }
\end{array}
$$

In $\triangle \mathrm{AEC}$,
$\angle \mathrm{AEC} \cong \angle \mathrm{ACE}$
$\therefore \quad \mathrm{AE}=\mathrm{AC}$
$\therefore \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
---- [From (v)]
---- (vi) [Sides opposite to congruent angles]
---- [From (i) and (vi)]

Exercise 1.2

1. Find the values of x in the following figures, if line l is parallel to one of the sides of the given triangles.
[Oct 12, Mar 13] [1 mark each]

(i)

(ii)

(iii)

Solution:

i. In $\triangle \mathrm{ABC}$,
line $l \|$ side BC
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AY}}{\mathrm{YC}}$
$\therefore \quad \frac{3}{6}=\frac{5}{x}$
$\therefore \quad x=\frac{6 \times 5}{3}$
$\therefore \quad x=10$ units
ii. In $\triangle \mathrm{RST}$,
line $l \|$ side TR
$\frac{\mathrm{SP}}{\mathrm{PT}}=\frac{\mathrm{SQ}}{\mathrm{QR}}$
$\therefore \quad \frac{x}{4.5}=\frac{1.3}{3.9}$
$\therefore \quad x=\frac{1.3 \times 4.5}{3.9}$
$\therefore \quad x=\frac{13 \times 45}{39 \times 10}$
$\therefore \quad x=1.5$ units
iii. In $\Delta \mathrm{LMN}$,
line $l \|$ side LN
---- [Given]
$\therefore \quad \frac{\mathrm{MP}}{\mathrm{PL}}=\frac{\mathrm{MQ}}{\mathrm{QN}}$
$\therefore \quad \frac{8}{2}=\frac{x}{3}$
$\therefore \quad \frac{3 \times 8}{2}=x$
$\therefore \quad x=3 \times 4$
$\therefore \quad x=12$ units
2. E and F are the points on the side $P Q$ and $P R$ respectively of $\triangle P Q R$. For each of the following cases, state whether $E F \| Q R$.
[2 marks each]
i. $\quad \mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=1.3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
ii. $\quad P E=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.
iii. $\quad P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}$ and $P F=0.36 \mathrm{~cm}$.

Solution:

$$
\text { i. } \begin{align*}
\frac{\mathrm{PE}}{\mathrm{EQ}} & =\frac{3.9}{1.3}=\frac{3}{1} \tag{i}\\
& \frac{\mathrm{PF}}{\mathrm{FR}} \tag{ii}
\end{align*}=\frac{3.6}{2.4}=\frac{3}{2}
$$

$\therefore \quad$ In $\triangle \mathrm{PQR}$,

$$
\begin{equation*}
\frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}} \tag{i}
\end{equation*}
$$

$\therefore \quad$ seg EF is not parallel to seg QR.
ii. $\quad \frac{\mathrm{PE}}{\mathrm{QE}}=\frac{4}{4.5}=\frac{8}{9}$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9}$
In $\triangle \mathrm{PQR}$,

$$
\frac{\mathrm{PE}}{\mathrm{QE}}=\frac{\mathrm{PF}}{\mathrm{FR}}
$$

---- [From (i) and (ii)]

$\therefore \quad \operatorname{seg} \mathrm{EF} \| \operatorname{seg} \mathbf{Q R}$
---- [By converse of B.P.T.]
iii. $\quad \mathrm{EQ}+\mathrm{PE}=\mathrm{PQ}$
---- $[P-E-Q]$
$\therefore \quad E Q=P Q-P E$ $=1.28-0.18=1.10$
$\mathrm{FR}+\mathrm{PF}=\mathrm{PR}$
---- $[\mathrm{P}-\mathrm{F}-\mathrm{R}]$
$\therefore \quad \mathrm{FR}=\mathrm{PR}-\mathrm{PF}$
$=2.56-0.36=2.20$
$\therefore \quad \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}$

$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55}$
In $\triangle \mathrm{PQR}$,

$$
\frac{P E}{E Q}=\frac{P F}{F R}
$$

---- [From (i) and (ii)]
$\therefore \quad$ seg EF $\|$ side $\mathbf{Q R}$
---- [By converse of B.P.T.]
3. In the adjoining figure, point Q is on the side $M P$ such that $M Q=2$ and $M P=5.5$. Ray NQ is the bisector of $\angle \mathrm{MNP}$ of $\triangle \mathrm{MNP}$.
Find MN : NP.

Solution:

$$
\begin{array}{ll}
& \mathrm{QP}+\mathrm{MQ}=\mathrm{MP} \\
\therefore & \mathrm{QP}+2=5.5 \\
\therefore & \mathrm{QP}=5.5-2 \\
\therefore & \mathrm{QP}=3.5 \\
& \mathrm{In} \triangle \mathrm{MNP}, \\
& \text { ray NQ is the angle bisector of } \angle \mathrm{MNP} \\
\therefore & \frac{\mathrm{MN}}{\mathrm{NP}}=\frac{\mathrm{MQ}}{\mathrm{QP}}
\end{array}
$$

[2 marks]

---- [Given]
---- [By property of angle bisector of a triangle]
$\therefore \quad \frac{\mathrm{MN}}{\mathrm{NP}}=\frac{2}{3.5}=\frac{20}{35}=\frac{4}{7}$
$\therefore \quad \frac{\mathrm{MN}}{\mathrm{NP}}=\frac{4}{7}$
$\therefore \quad \mathrm{MN}: \mathbf{N P}=4: 7$
4. In the adjoining figure, ray $Y M$ is the bisector of $\angle X Y Z$, where $X Y \cong Y Z$.
Find the relation between $X M$ and $M Z$.
[2 marks]
Solution:
In $\triangle \mathrm{XYZ}$,
Ray YM is the angle bisector of $\angle \mathrm{XYZ}$
$\therefore \quad \frac{\mathrm{XM}}{\mathrm{MZ}}=\frac{\mathrm{XY}}{\mathrm{YZ}}$
$\operatorname{seg} X Y \cong \operatorname{seg} Y Z$
---- [Given]

---- (i) [By property of angle bisector of a triangle]
---- [Given]
$\therefore \quad \mathrm{XY}=\mathrm{YZ}$
$\therefore \quad \frac{\mathrm{XY}}{\mathrm{YZ}}=1$
$\therefore \quad \frac{\mathrm{XM}}{\mathrm{MZ}}=1$
---- [From (i) and (ii)]
$\therefore \quad \mathrm{XM}=\mathrm{MZ}$
$\therefore \quad \operatorname{seg} \mathbf{X M} \cong \boldsymbol{\operatorname { s e g }} \mathbf{M Z}$
5. In the adjoining figure, ray $P T$ is the bisector of $\angle Q P R$. Find the value of x and the perimeter of $\triangle P Q R$. [Mar 14] [3 marks]

Solution:

In $\triangle \mathrm{PQR}$,
Ray PT is the angle bisector of $\angle \mathrm{QPR}$.
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{\mathrm{QT}}{\mathrm{TR}}$
---- [By property of angle bisector of a triangle]
$\therefore \quad \frac{5.6}{x}=\frac{4}{5}$
$\therefore \quad 5.6 \times 5=4 \times x$
$\therefore \quad \frac{5.6 \times 5}{4}=x$
$\therefore \quad x=7 \mathrm{~cm}$
$\therefore \quad \mathrm{PR}=7 \mathrm{~cm} \quad---[\because \mathrm{PR}=x]$
Now, $\mathrm{QR}=\mathrm{QT}+\mathrm{TR} \quad---[\mathrm{Q}-\mathrm{T}-\mathrm{R}]$
$\therefore \quad \mathrm{QR}=4+5$
$\therefore \quad \mathrm{QR}=9 \mathrm{~cm}$
Perimeter of $\triangle \mathrm{PQR}=\mathrm{PQ}+\mathrm{QR}+\mathrm{PR}$

$$
=5.6+9+7=21.6 \mathrm{~cm}
$$

$\therefore \quad$ The value of \boldsymbol{x} is 7 cm and the perimeter of $\triangle P Q R$ is 21.6 cm .
6. In the adjoining figure, if $M L \| B C$ and $N L \| D C$.

Then prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

Proof:

In $\triangle \mathrm{ABC}$,
seg ML || side BC
---- [Given]
$\therefore \quad \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
---- (i) [By B.P.T.]

In $\triangle \mathrm{ADC}$,
seg NL || side DC
---- [Given]
$\therefore \quad \frac{\mathrm{AN}}{\mathrm{ND}}=\frac{\mathrm{AL}}{\mathrm{LC}}$
(ii) [By B.P.T.]
$\therefore \quad \frac{\mathrm{AM}}{\mathrm{MB}}=\frac{\mathrm{AN}}{\mathrm{ND}}$
---- [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{MB}}{\mathrm{AM}}=\frac{\mathrm{ND}}{\mathrm{AN}}$
---- [By invertendo]
$\therefore \quad \frac{\mathrm{MB}+\mathrm{AM}}{\mathrm{AM}}=\frac{\mathrm{ND}+\mathrm{AN}}{\mathrm{AN}}$
---- [By componendo]
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AM}}=\frac{\mathrm{AD}}{\mathrm{AN}}$
---- $[\mathrm{A}-\mathrm{M}-\mathrm{B}, \mathrm{A}-\mathrm{N}-\mathrm{D}]$
$\therefore \quad \frac{\mathbf{A M}}{\mathbf{A B}}=\frac{\mathbf{A N}}{\mathbf{A D}}$
---- [By invertendo]
7. As shown in the adjoining figure, in $\triangle P Q R$, seg $P M$ is the median. Bisectors of $\angle P M Q$ and $\angle P M R$ intersect side $P Q$ and side $P R$ in points X and Y respectively, then prove that $X Y|\mid Q R$. [3 marks]

Proof:

Draw line XY.
In $\triangle \mathrm{PMQ}$,
ray MX is the angle bisector of $\angle \mathrm{PMQ}$.
---- [Given]

$\therefore \quad \frac{\mathrm{MP}}{\mathrm{MQ}}=\frac{\mathrm{PX}}{\mathrm{QX}}$
---- (i) [By property of angle bisector of a triangle]
In $\triangle \mathrm{PMR}$,
ray MY is the angle bisector of $\angle \mathrm{PMR}$.
---- [Given]
$\therefore \quad \frac{\mathrm{MP}}{\mathrm{MR}}=\frac{\mathrm{PY}}{\mathrm{RY}}$
But, seg PM is the median
---- (ii) [By property of angle bisector of a triangle]
$\therefore \quad \mathrm{M}$ is midpoint of $\operatorname{seg} \mathrm{QR}$.
$\therefore \quad \mathrm{MQ}=\mathrm{MR}$
---- [Given]
$\therefore \quad \frac{\mathrm{PX}}{\mathrm{QX}}=\frac{\mathrm{PY}}{\mathrm{RY}}$
---- [From (i), (ii) and (iii)]
In $\triangle P Q R, \operatorname{seg} X Y \| \operatorname{seg} Q R$
---- [By converse of B.P.T.]
8. $\square A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O.

Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

Proof:

$\square \mathrm{ABCD}$ is a trapezium.
side $\mathrm{AB} \|$ side DC and seg AC is a transversal.
$\angle \mathrm{BAC} \cong \angle \mathrm{DCA}$
---- (i) [Alternate angles]

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{BAO} \cong \angle \mathrm{DCO}$
---- [From (i) and A-O-C]
$\angle \mathrm{AOB} \cong \angle \mathrm{COD}$
---- [Vertically opposite angles]
$\therefore \quad \triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
---- [By A-A test of similarity]
$\therefore \quad \frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\mathrm{BO}}{\mathrm{DO}}$
---- [c.s.s.t.]
$\therefore \quad \frac{\mathbf{A O}}{\mathbf{B O}}=\frac{\mathbf{C O}}{\mathbf{D O}}$
---- [By alternendo]
9. In the adjoining figure, $\square \mathrm{ABCD}$ is a trapezium.

Side $A B|\mid \operatorname{seg} P Q \|$ side $D C$ and $A P=15, P D=12, Q C=14$, then find $B Q$.
[2 marks]

Solution:

Side AB || seg PQ || side DC
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{BQ}}{\mathrm{QC}}$
---- [Given]

---- [By property of intercepts made by three parallel lines on a transversal]
$\therefore \quad \frac{15}{12}=\frac{\mathrm{BQ}}{14}$
---- $[\because \mathrm{AP}=15, \mathrm{PD}=12$ and $\mathrm{QC}=14]$
$\therefore \quad \mathrm{BQ}=\frac{15 \times 14}{12}$
$\therefore \quad B Q=17.5$
10. Using the converse of Basic Proportionality Theorem, prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side and is half of it.

Given: \quad In $\triangle A B C, P$ and Q are midpoints of sides $A B$ and $A C$ respectively.
To Prove: \quad seg $\mathrm{PQ} \|$ side BC

$$
\mathrm{PQ}=\frac{1}{2} \mathrm{BC}
$$

Proof:

$$
\begin{array}{rll}
& \mathrm{AP}=\mathrm{PB} & --- \text { [P is the midpoint of side } \mathrm{AB} .] \\
\therefore & \frac{\mathrm{AP}}{\mathrm{~PB}}=1 & ---(\mathrm{i}) \\
& \mathrm{AQ}=\mathrm{QC} & ---[\mathrm{Q} \text { is the midpoint of side } \mathrm{AC} .] \\
\therefore & \frac{\mathrm{AQ}}{\mathrm{QC}}=1 & ---(\text { ii) } \tag{ii}
\end{array}
$$

In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
$\therefore \quad \operatorname{seg} P Q \|$ side $B C$
---- [From (i) and (ii)]

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{APQ}$,
$\angle \mathrm{ABC} \cong \angle \mathrm{APQ}$
---- (iii) [By converse of B.P.T.]
$\angle \mathrm{BAC} \cong \angle \mathrm{PAQ}$
---- [From (iii), corresponding angles]
---- [Common angle]
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{APQ}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AP}}=\frac{\mathrm{BC}}{\mathrm{PQ}}$
---- [By A-A test of similarity]
$\therefore \quad \frac{\mathrm{AP}+\mathrm{PB}}{\mathrm{AP}}=\frac{\mathrm{BC}}{\mathrm{PQ}}$
---- $[\mathrm{A}-\mathrm{P}-\mathrm{B}]$
$\therefore \quad \frac{\mathrm{AP}+\mathrm{AP}}{\mathrm{AP}}=\frac{\mathrm{BC}}{\mathrm{PQ}}$
$---[\because \mathrm{AP}=\mathrm{PB}]$
$\therefore \quad \frac{2 \mathrm{AP}}{\mathrm{AP}}=\frac{\mathrm{BC}}{\mathrm{PQ}}$
$\therefore \quad \frac{2}{1}=\frac{\mathrm{BC}}{\mathrm{PQ}}$
$\therefore \quad \mathrm{PQ}=\frac{1}{2} \mathrm{BC}$

1.3 Similarity

Two figures are called similar if they have same shapes not necessarily the same size.

Properties of Similar Triangles:

1. Reflexivity: $\triangle \mathrm{ABC} \sim \triangle \mathrm{ABC}$. It means a triangle is similar to itself.
2. Symmetry: If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, then $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$.
3. Transitivity: If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$, then $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$.

Exercise 1.3

1. Study the following figures and find out in each case whether the triangles are similar. Give reason.
[2 marks each]

(i)

(ii)

(iii)

Solution:

i. $\quad \triangle \mathrm{MTP}$ and $\triangle \mathrm{MNK}$ are similar.

Reason:

$\mathrm{MN}=\mathrm{MT}+\mathrm{TN}$
---- [M-T-N]
$\therefore \quad \mathrm{MN}=2+4=6$ units
$\therefore \quad \frac{\mathrm{MT}}{\mathrm{MN}}=\frac{2}{6}=\frac{1}{3}$
$\mathrm{MK}=\mathrm{MP}+\mathrm{PK}$
---- [M-P-K]
$\therefore \quad \mathrm{MK}=3+6=9$ units
$\therefore \quad \frac{\mathrm{MP}}{\mathrm{MK}}=\frac{3}{9}=\frac{1}{3}$
In $\triangle \mathrm{MTP}$ and $\triangle \mathrm{MNK}$,
$\frac{\mathrm{MT}}{\mathrm{MN}}=\frac{\mathrm{MP}}{\mathrm{MK}}$
---- [From (i) and (ii)]
$\angle \mathrm{TMP} \cong \angle \mathrm{NMK}$
---- [Common angle]
$\therefore \quad \triangle$ MTP $\sim \triangle$ MNK
---- [By S-A-S test of similarity]
ii. $\quad \triangle P R T$ and $\triangle P X S$ are not similar.

Reason:

$\mathrm{PX}=\mathrm{PR}+\mathrm{RX}$
$\therefore \quad P X=a+2 a=3 a$
$\therefore \quad \frac{P R}{P X}=\frac{a}{3 a}=\frac{1}{3}$
$\frac{\mathrm{RT}}{\mathrm{XS}}=\frac{2 \mathrm{~b}}{3 \mathrm{~b}}=\frac{2}{3}$
$\therefore \quad \frac{\mathrm{PR}}{\mathrm{PX}} \neq \frac{\mathrm{RT}}{\mathrm{XS}}$
$\therefore \quad$ The corresponding sides of the two triangles are not in proportion.
$\therefore \quad \triangle \mathrm{PRT}$ and $\triangle \mathrm{PXS}$ are not similar.
iii. $\quad \triangle D M N$ and $\triangle A Q R$ are similar.

Reason:

In $\triangle \mathrm{DMN}$ and $\triangle \mathrm{AQR}$,
$\angle \mathrm{DMN} \cong \angle \mathrm{AQR}$
---- [Each is 55°]
$\angle \mathrm{DNM} \cong \angle \mathrm{ARQ}$
---- [Each is of same measure]
$\therefore \quad \triangle \mathrm{DMN} \sim \Delta \mathrm{AQR}$
---- [By A-A test of similarity]
2. In the adjoining figure, $\triangle A B C$ is right angled at B.
D is any point on $A B$. seg $D E \perp \operatorname{seg} A C$.

[2 marks]

Solution:

$\therefore \quad \triangle \mathrm{AED} \sim \triangle \mathrm{ABC}$
---- [By A-A test of similarity]
---- [c.s.s.t.]
3. In the adjoining figure, E is a point on side $C B$ produced of an isosceles $\triangle \mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.
[3 marks]
Proof:
In $\triangle \mathrm{ABC}$,
$\operatorname{seg} \mathrm{AB} \cong \operatorname{seg} \mathrm{AC}$
---- [Given]
$\angle \mathrm{B} \cong \angle \mathrm{C}$
---- (i) [By isosceles triangle theorem]

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
$\angle \mathrm{ABD} \cong \angle \mathrm{ECF}$
---- [From (i)]
$\angle \mathrm{ADB} \cong \angle \mathrm{EFC}$
---- [Each is $\left.90^{\circ}\right]$
$\therefore \quad \triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$
---- [By A-A test of similarity]
4. D is a point on side $B C$ of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Show that $A C^{2}=B C \times D C$. [3 marks] Proof:

$$
\begin{array}{rll}
& \text { In } \triangle \mathrm{ACB} \text { and } \triangle \mathrm{DCA}, \\
& \angle \mathrm{BAC} \cong \angle \mathrm{ADC} & \\
& \angle \mathrm{ACB} \cong \angle \mathrm{DCA} & \text {----- [Given] } \\
\therefore \quad & \Delta \mathrm{ACB} \sim \Delta \mathrm{DCA} & \text {---- [By A-A test of similarity] } \\
\therefore \quad & \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AB}}{\mathrm{DA}} & \text {---- [c.s.s.t.] } \\
\therefore \quad & \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}} & \\
\therefore \quad & \mathbf{A C}^{2}=\mathbf{B C} \times \mathbf{D C} &
\end{array}
$$

5. A vertical pole of length 6 m casts a shadow of 4 m long on the ground. At the same time, a tower casts a shadow 28 m long. Find the height of the tower.

Solution:

AB represents the length of the pole.
$\therefore \quad \mathrm{AB}=6 \mathrm{~m}$
$B C$ represents the shadow of the pole.
$\therefore \quad B C=4 \mathrm{~m}$
$P Q$ represents the height of the tower.
QR represents the shadow of the tower.
$\therefore \quad \mathrm{QR}=28 \mathrm{~m}$
$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
 $----[\because$ vertical pole and tower are similar figures]
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}} \quad---$ [c.s.s.s.]
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \quad \therefore \quad \frac{6}{\mathrm{PQ}}=\frac{4}{28}$
$\therefore \quad \frac{6}{P Q}=\frac{1}{7} \quad \therefore \quad 6 \times 7=P Q$
$\therefore \quad P Q=42 \mathrm{~m}$
$\therefore \quad$ Height of the tower is $\mathbf{4 2} \mathbf{~ m}$.
6. Triangle $A B C$ has sides of length 5,6 and 7 units while $\triangle P Q R$ has perimeter of 360 units. If $\triangle A B C$ is similar to $\triangle P Q R$, then find the sides of $\triangle P Q R$.

Solution:

$$
\begin{align*}
& \text { Since, } \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}} \tag{c.s.s.t.}\\
& \therefore \quad \frac{5}{\mathrm{PQ}}=\frac{6}{\mathrm{QR}}=` \frac{7}{\mathrm{PR}} \\
& \text { By theorem on equal ratios, } \\
& \text { each ratio }=\frac{5+6+7}{\mathrm{PQ}+\mathrm{QR}+\mathrm{PR}} \\
& =\frac{18}{360} \\
& \text {---- }[\because \text { Perimeter of } \triangle P Q R=P Q+Q R+P R=360] \\
& =\frac{1}{20} \\
& \therefore \quad \frac{5}{\mathrm{PQ}}=\frac{6}{\mathrm{QR}}=\frac{7}{\mathrm{PR}}=\frac{1}{20} \tag{i}\\
& \frac{5}{\mathrm{PQ}}=\frac{1}{20} \tag{i}\\
& \therefore \quad \mathrm{PQ}=20 \times 5 \\
& \therefore \quad \mathrm{PQ}=100 \text { units } \\
& \frac{6}{\mathrm{QR}}=\frac{1}{20} \tag{i}\\
& \therefore \quad \mathrm{QR}=6 \times 20 \\
& \therefore \quad \mathrm{QR}=120 \text { units } \\
& \frac{7}{\mathrm{PR}}=\frac{1}{20} \tag{i}\\
& \therefore \quad \mathrm{PR}=7 \times 20 \\
& \therefore \quad \mathrm{PR}=140 \text { units } \\
& \therefore \quad \triangle P Q R \text { has sides } P Q, Q R \text { and } P R \text { of length } 100 \text { units, } 120 \text { units and } 140 \text { units respectively. }
\end{align*}
$$

iii. $\frac{\mathrm{A}(\triangle \mathrm{PBC})}{\mathrm{A}(\triangle \mathrm{PQA})}=\frac{25}{1}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{PBC})-\mathrm{A}(\Delta \mathrm{PQA})}{\mathrm{A}(\triangle \mathrm{PQA})}=\frac{25-1}{1}$
---- [By invertendo]
$\therefore \quad \frac{\mathrm{A}(\square \mathrm{QBCA})}{\mathrm{A}(\triangle \mathrm{PQA})}=\frac{24}{1}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{PQA})}{\mathrm{A}(\square \mathrm{QBCA})}=\frac{1}{24}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{PQA}): \mathbf{A}(\square \mathbf{Q B C A})=\mathbf{1}: \mathbf{2 4}$
---- [By dividendo]
---- [By invertendo]
7. In the adjoining figure, $D E \| B C$ and $A D: D B=5: 4$.
Find: i. DE : BC
ii. DO : DC
iii. $\quad \mathbf{A}(\triangle \mathrm{DOE}): \mathbf{A}(\triangle \mathrm{DCE})$

Solution:

i. $\quad \mathrm{DE} \| \mathrm{BC}$

AB is a transversal
$\therefore \quad \angle \mathrm{ADE} \cong \angle \mathrm{ABC}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{ADE} \cong \angle \mathrm{ABC}$
$\angle \mathrm{DAE} \cong \angle \mathrm{BAC}$
$\therefore \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{5}{4}$
$\therefore \quad \frac{\mathrm{DB}}{\mathrm{AD}}=\frac{4}{5}$
$\therefore \quad \frac{\mathrm{DB}+\mathrm{AD}}{\mathrm{AD}}=\frac{4+5}{5}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{9}{5}$
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{5}{9}$
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{5}{9}$
$\therefore \quad \mathrm{DE}: \mathrm{BC}=5: 9$
ii. In $\triangle \mathrm{DOE}$ and $\triangle \mathrm{COB}$,

$$
\angle \mathrm{EDO} \cong \angle \mathrm{BCO}
$$

$\angle \mathrm{DOE} \cong \angle \mathrm{COB}$
$\therefore \quad \triangle \mathrm{DOE} \sim \Delta \mathrm{COB}$
$\therefore \quad \frac{\mathrm{DO}}{\mathrm{OC}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\therefore \quad \frac{\mathrm{DO}}{\mathrm{OC}}=\frac{5}{9}$
$\therefore \quad \frac{\mathrm{OC}}{\mathrm{DO}}=\frac{9}{5}$
$\therefore \quad \frac{\mathrm{OC}+\mathrm{DO}}{\mathrm{DO}}=\frac{9+5}{5}$
$\therefore \quad \frac{\mathrm{DC}}{\mathrm{DO}}=\frac{14}{5}$
$\therefore \quad \frac{\mathrm{DO}}{\mathrm{DC}}=\frac{5}{14}$
$\therefore \quad \mathrm{DO}: \mathrm{DC}=5: \mathbf{1 4}$
---- [Given]
---- (i) [Corresponding angles]
[5 marks]
---- [From (i)]
---- [Common angle]
---- [By A-A test of similarity]
---- (ii) [c.s.s.t.]
---- [Substituting the given values]
---- [By invertendo]
---- [By componendo]
---- [A-D-B]
---- (iii) [By invertendo]
---- (iv) [From (ii) and (iii)]
iii. $\frac{\mathrm{A}(\triangle \mathrm{DOE})}{\mathrm{A}(\triangle \mathrm{DCE})}=\frac{\mathrm{DO}}{\mathrm{DC}}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{DOE})}{\mathrm{A}(\triangle \mathrm{DCE})}=\frac{5}{14}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{DOE}): \mathrm{A}(\triangle \mathrm{DCE})=5: 14$
---- [Ratio of areas of two triangles having equal heights is equal to the ratio of the corresponding bases]
---- [From (v)]
8. In the adjoining figure, $\operatorname{seg} \mathrm{AB} \| \operatorname{seg} \mathrm{DC}$.

Using the information given, find the value of x.
[3 marks]

Solution:

Side $\mathrm{DC} \|$ Side AB on transversal DB .
$\therefore \quad \angle \mathrm{ABD} \cong \angle \mathrm{CDB}$ In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{ABO} \cong \angle \mathrm{CDO}$
$\angle \mathrm{AOB} \cong \angle \mathrm{COD}$
$\therefore \quad \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$
$\therefore \quad \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
$\therefore \quad \frac{3 x-19}{x-5}=\frac{x-3}{3}$
$\therefore \quad 3(3 x-19)=(x-3)(x-5)$
$\therefore \quad 9 x-57=x^{2}-8 x+15$
$\therefore \quad x^{2}-8 x-9 x+15+57=0$
$\therefore \quad x^{2}-17 x+72=0$
$\therefore \quad(x-9)(x-8)=0$
$\therefore \quad x-9=0$ or $x-8=0$
$\therefore \quad x=9$ or $x=8$
---- (i) [Alternate angles]
---- [From (i), D - O - B]
---- [Vertically opposite angles]
---- [By A-A test of similarity]
---- [c.s.s.t]
---- [Substituting the given values]
9. Using the information given in the adjoining figure, find $\angle \mathrm{F}$.
[3 marks]

Solution:

$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{3.8}{7.6}=\frac{1}{2}$
$\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{6}{12}=\frac{1}{2}$
$\frac{\mathrm{CA}}{\mathrm{FD}}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
---- [From (i), (ii) and (iii)]
$\angle \mathrm{C} \cong \angle \mathrm{F}$
---- [By S-S-S test of similarity]

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
---- [Sum of the measures of all angles of a triangle is 180°.]
$\therefore \quad 80^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
---- [Substituting the given values]
$\therefore \quad \angle \mathrm{C}=180^{\circ}-140^{\circ}$
$\therefore \quad \angle \mathrm{C}=40^{\circ}$
$\therefore \quad \angle \mathrm{F}=40^{\circ}$
---- [From (iv) and (v)]
10. A vertical stick 12 m long casts a shadow 8 m long on the ground. At the same time a tower casts the shadow of length 40 m on the ground. Determine the height of the tower.

Solution:

Let AB represent the vertical stick, $\mathrm{AB}=12 \mathrm{~m}$.
BC represents the shadow of the stick, $\mathrm{BC}=8 \mathrm{~m}$.
PQ represents the height of the tower.
QR represents the shadow of the tower, $\mathrm{QR}=40 \mathrm{~m}$.
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\therefore \quad \frac{12}{\mathrm{PQ}}=\frac{8}{40}$
---- [Substituting the given values]
$\therefore \quad \mathrm{PQ}=12 \times 5=60$
$\therefore \quad$ The height of the tower is $\mathbf{6 0} \mathbf{~ m}$.
11. In each of the figures, an altitude is drawn to the hypotenuse. The lengths of different segments are marked in each figure. Determine the value of x, y, z in each case.

Solution:

i.	In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{ABC}=90^{\circ}$	---- [Given]
	seg $\mathrm{BD} \perp$ hypotenuse AC	---- [Given]
\therefore	$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC}$	---- [By property of geometric mean]
\therefore	$y^{2}=4 \times 5$	---- [Substituting the given values]
\cdots	$y=\sqrt{4 \times 5}$	---- [Taking square root on both sides]
\therefore	$y=2 \sqrt{5}$	---- (i)
	In $\triangle \mathrm{ADB}$,	
	$\mathrm{m} \angle \mathrm{ADB}=90^{\circ}$	---- [\because Seg BD \perp hypotenuse AC]
	$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$	---- [By Pythagoras theorem]
\cdots	$x^{2}=(4)^{2}+y^{2}$	---- [Substituting the given values]
..	$x^{2}=4^{2}+(2 \sqrt{5})^{2}$	---- [From (i)]
\therefore	$x^{2}=16+20$	
\therefore	$x^{2}=36$	
\therefore	$x=6$	---- [Taking square root on both sides]
	In $\triangle \mathrm{BDC}$,	
	$\mathrm{m} \angle \mathrm{BDC}=90^{\circ}$	---- [\because Seg BD \perp hypotenuse AC]
\therefore	$\mathrm{BC}^{2}=\mathrm{BD}^{2}+\mathrm{CD}^{2}$	---- [By Pythagoras theorem]
\cdots	$z^{2}=y^{2}+(5)^{2}$	---- [Substituting the given values]
.	$z^{2}=(2 \sqrt{5})^{2}+(5)^{2}$	---- [From (i)]
\therefore	$z^{2}=20+25$	
\cdots	$z^{2}=45$	
\therefore	$\mathrm{z}=\sqrt{9 \times 5}$	---- [Taking square root on both sides]
\therefore	$\mathrm{z}=3 \sqrt{5}$	
\therefore	$x=6, y=2 \sqrt{5}$ and $z=3 \sqrt{5}$	

ii. In $\triangle \mathrm{PSQ}$,
$\mathrm{m} \angle \mathrm{PSQ}=90^{\circ}$
$\therefore \quad \mathrm{PQ}^{2}=\mathrm{PS}^{2}+\mathrm{QS}^{2}$
$\therefore \quad(6)^{2}=(4)^{2}+y^{2}$
$\therefore \quad 36=16+y^{2}$
$\therefore \quad y^{2}=36-16$
$\therefore \quad y^{2}=20$
$\therefore \quad y=\sqrt{4 \times 5}$
$\therefore \quad y=2 \sqrt{5}$
In $\triangle \mathrm{PQR}$,
seg QS \perp hypotenuse PR
$\therefore \quad \mathrm{QS}^{2}=\mathrm{PS} \times \mathrm{SR}$
$\therefore \quad y^{2}=4 \times x$
$\therefore \quad(2 \sqrt{5})^{2}=4 x$
$\therefore \quad 20=4 x$
$\therefore \quad x=\frac{20}{4}$
$\therefore \quad x=5$
In $\Delta \mathrm{QSR}$,
$\mathrm{m} \angle \mathrm{QSR}=90^{\circ}$
$\therefore \quad \mathrm{QR}^{2}=\mathrm{QS}^{2}+\mathrm{SR}^{2}$
$\therefore \quad \mathrm{z}^{2}=y^{2}+x^{2}$
$\therefore \quad \mathrm{z}^{2}=(2 \sqrt{5})^{2}+(5)^{2}$
$\therefore \quad \mathrm{z}^{2}=20+25$
$\therefore \quad z^{2}=45$
$\therefore \quad \mathrm{z}=\sqrt{9 \times 5}$
$\therefore \quad \mathrm{z}=3 \sqrt{5}$
$\therefore \quad x=5, y=2 \sqrt{5}$ and $z=3 \sqrt{5}$
---- [\because Seg QS \perp hypotenuse PR]
---- [By Pythagoras theorem]
---- [Substituting the given values]
---- [Taking square root on both sides]

---- (i)
---- [Given]
---- [By the property of geometric mean]
---- [Substituting the given values]
---- [From (i)]
---- [\because Seg QS \perp hypotenuse PR]
---- [By Pythagoras theorem]
---- [Substituting the given values]
---- [From (i) and (ii)]
---- [Taking square root on both sides]
12. $\triangle \mathrm{ABC}$ is a right angled triangle with $\angle \mathrm{A}=90^{\circ}$. A circle is inscribed in it. The lengths of the sides containing the right angle are 6 cm and 8 cm . Find the radius of the circle.
[4 marks]
Construction: Let P, Q and R be the points of contact of tangents AC, AB and BC respectively and draw segments OP and OQ.

Solution:

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{BAC}=90^{\circ}$
$\therefore \quad \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$
$\therefore \quad \mathrm{BC}^{2}=(6)^{2}+(8)^{2}$
$\therefore \quad \mathrm{BC}^{2}=36+64$
$\therefore \quad \mathrm{BC}^{2}=100$
$\therefore \quad \mathrm{BC}=10$ units
Let the radius of the circle be $x \mathrm{~cm}$.
$\therefore \quad \mathrm{OP}=\mathrm{OQ}=x$
In $\square \mathrm{OPAQ}$,
$\angle \mathrm{OPA}=\angle \mathrm{OQA}=90^{\circ}$
$\angle \mathrm{PAQ}=90^{\circ}$
$\therefore \quad \angle \mathrm{POQ}=90^{\circ}$
$\therefore \quad \square \mathrm{OPAQ}$ is a rectangle
But, $\quad O P=O Q$
$\therefore \quad \square \mathrm{OPAQ}$ is a square
$\therefore \quad \mathrm{OP}=\mathrm{OQ}=\mathrm{QA}=\mathrm{AP}=x$
---- [Given]
---- [By Pythagoras theorem]
---- [Substituting the given values]
---- (i) [Taking square root on both sides]
---- [Radii of same circle]
---- [Radius is \perp to the tangent]
---- [Given]
---- [Remaining angle]
---- [By definition]
---- [Radii of same circle]
---- [A rectangle is a square if its adjacent sides are congruent]
---- [Sides of a square]

Now, $\mathrm{AQ}+\mathrm{BQ}=\mathrm{AB}$
---- [A-Q-B]
$\therefore \quad x+\mathrm{BQ}=8$
---- [Substituting the given values]
$\therefore \quad \mathrm{BQ}=8-x$
$\mathrm{AP}+\mathrm{CP}=\mathrm{AC}$
---- [A-P-C]
$\therefore \quad x+\mathrm{CP}=6$
$\therefore \quad \mathrm{CP}=6-x$
$\mathrm{BQ}=\mathrm{BR}=8-x$
---- [Substituting the given values]
$\mathrm{CP}=\mathrm{CR}=6-x$
$\mathrm{BC}=\mathrm{CR}+\mathrm{BR}$
$\therefore \quad 10=6-x+8-x$
$\therefore \quad 2 x=4$
$\therefore \quad x=2$
$\therefore \quad$ The radius of the circle is $\mathbf{2} \mathbf{~ c m}$.
13. In $\triangle P Q R$, seg $P M$ is a median. If $P M=9$ and $P Q^{2}+P R^{2}=290$, find $Q R$.

Solution:

14. From the information given in the adjoining figure,

Prove that: $\mathbf{P M}=\mathbf{P N}=\sqrt{3} \times \mathbf{a}$, where $\mathbf{Q R}=\mathbf{a} . \quad$ [4 marks]

Proof:

In $\triangle \mathrm{PMR}$,
$\mathrm{QM}=\mathrm{QR}=\mathrm{a}$
---- [Given]

$\therefore \quad \mathrm{Q}$ is midpoint of seg MR .
$\therefore \quad$ seg PQ is the median
$\therefore \quad \mathrm{PM}^{2}+\mathrm{PR}^{2}=2 \mathrm{PQ}^{2}+2 \mathrm{QM}^{2}$
---- [By Apollonius theorem]
$\therefore \quad P M^{2}+a^{2}=2 a^{2}+2 a^{2}$
---- [Substituting the given values]
$\therefore \quad \mathrm{PM}^{2}+\mathrm{a}^{2}=4 \mathrm{a}^{2} \quad \therefore \quad \mathrm{PM}^{2}=4 \mathrm{a}^{2}-\mathrm{a}^{2}$
$\therefore \quad \mathrm{PM}^{2}=3 \mathrm{a}^{2} \quad \therefore \quad \mathrm{PM}=\sqrt{3} \mathrm{a} \quad---$ [Taking square root on both sides]
Similarly, we can prove
$\mathrm{PN}=\sqrt{3} \mathrm{a}$
$\therefore \quad \mathbf{P M}=\mathbf{P N}=\sqrt{\mathbf{3}} \mathbf{a}$
15. D and E are the points on sides $A B$ and $A C$ such that $A B=5.6, A D=1.4$, $\mathrm{AC}=7.2$ and $\mathrm{AE}=1.8$. Show that $\mathrm{DE} \| \mathrm{BC}$.
[2 marks]

Proof:

$$
\begin{array}{ll}
& \mathrm{DB}=\mathrm{AB}-\mathrm{AD} \\
\therefore & \mathrm{DB}=5.6-1.4 \\
\therefore & \mathrm{DB}=4.2 \text { units } \\
\therefore & \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{1.4}{4.2}=\frac{1}{3} \tag{i}
\end{array}
$$

---- [A-D-B]
---- [Substituting the given values]

Also, $\mathrm{EC}=\mathrm{AC}-\mathrm{AE}$
$\therefore \quad \mathrm{EC}=7.2-1.8$
---- [A-E-C]

---- [Substituting the given values]
$\therefore \quad \mathrm{EC}=5.4$ units
$\therefore \quad \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{1.8}{5.4}=\frac{1}{3}$
In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\therefore \quad \operatorname{seg} \mathrm{DE} \|$ seg BC
---- [From (i) and (ii)]
---- [By converse of B.P.T.]
16. In $\triangle P Q R$, if $Q S$ is the angle bisector of $\angle Q$, then show that
$\frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{\mathrm{PQ}}{\mathrm{QR}}$
[3 marks]
(Hint: Draw QT \perp PR)
Proof:
In $\triangle \mathrm{PQR}$,
Ray QS is the angle bisector of $\angle \mathrm{PQR}$
---- [Given]

$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{PS}}{\mathrm{SR}}$
---- (i) [By property of angle bisector of a triangle]
Height of $\triangle \mathrm{PQS}=$ Height of $\triangle \mathrm{QRS}=\mathrm{QT}$
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{\mathrm{PS}}{\mathrm{SR}}$
---- (ii) [Ratio of areas of two triangles having equal heights is equal to the ratio of their corresponding bases]
$\therefore \quad \frac{\mathbf{A}(\Delta \mathrm{PQS})}{\mathbf{A}(\Delta \mathrm{QRS})}=\frac{\mathbf{P Q}}{\mathbf{Q R}}$
---- [From (i) and (ii)]
17. In the adjoining figure, $X Y \| A C$ and $X Y$ divides the triangular region $A B C$ into two equal areas. Determine AX : AB.

Solution:

seg XY $\|$ side AC on transversal BC
$\angle \mathrm{XYB} \cong \angle \mathrm{ACB}$
In $\triangle \mathrm{XYB}$ and $\triangle \mathrm{ACB}$,
$\angle \mathrm{XYB} \cong \angle \mathrm{ACB}$
---- (i) [Corresponding angles]
$\angle \mathrm{ABC} \cong \angle \mathrm{XBY}$
---- [From (i)]
---- [Common angle]

$\therefore \quad \triangle \mathrm{XYB} \sim \triangle \mathrm{ACB}$
$\frac{\mathrm{A}(\triangle \mathrm{XYB})}{\mathrm{A}(\triangle \mathrm{ACB})}=\frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}}$
Now, $\mathrm{A}(\triangle \mathrm{XYB})=\frac{1}{2} \mathrm{~A}(\triangle \mathrm{ACB})$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{XYB})}{\mathrm{A}(\triangle \mathrm{ACB})}=\frac{1}{2}$
---- [By A-A test of similarity]
---- (ii) [By theorem on areas of similar triangles]
---- $[\because$ seg XY divides the triangular region ABC into two equal areas]
$\therefore \quad \frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}}=\frac{1}{2}$
---- [From (ii) and (iii)]
$\therefore \quad \frac{\mathrm{XB}}{\mathrm{AB}}=\frac{1}{\sqrt{2}}$
$\therefore \quad 1-\frac{\mathrm{XB}}{\mathrm{AB}}=1-\frac{1}{\sqrt{2}}$
---- [Subtracting both sides from 1]
$\therefore \quad \frac{\mathrm{AB}-\mathrm{XB}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}}$
$\therefore \quad \frac{\mathrm{AX}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}}$
$\therefore \quad \mathbf{A X}: \mathbf{A B}=(\sqrt{2}-1): \sqrt{2}$
18. Let X be any point on side $B C$ of $\triangle A B C, X M$ and $X N$ are drawn parallel to BA and CA. MN meets produced BC in T. Prove that $T X^{2}=$ TB.TC.
[4 marks]

Proof:

In \triangle TXM,
seg BN || seg XM
---- [Given]

$\therefore \quad \frac{\mathrm{TN}}{\mathrm{NM}}=\frac{\mathrm{TB}}{\mathrm{BX}}$
---- (i) [By B.P.T.]
In $\triangle \mathrm{TMC}$,
seg XN || seg CM
---- [Given]
$\therefore \quad \frac{\mathrm{TN}}{\mathrm{NM}}=\frac{\mathrm{TX}}{\mathrm{CX}}$
---- (ii) [By B.P.T.]
$\therefore \quad \frac{\mathrm{TB}}{\mathrm{BX}}=\frac{\mathrm{TX}}{\mathrm{CX}}$
---- [From (i) and (ii)]
$\therefore \quad \frac{\mathrm{BX}}{\mathrm{TB}}=\frac{\mathrm{CX}}{\mathrm{TX}}$
---- [By invertendo]
$\therefore \quad \frac{\mathrm{BX}+\mathrm{TB}}{\mathrm{TB}}=\frac{\mathrm{CX}+\mathrm{TX}}{\mathrm{TX}}$
---- [By componendo]
$\therefore \quad \frac{\mathrm{TX}}{\mathrm{TB}}=\frac{\mathrm{TC}}{\mathrm{TX}}$
---- [T-B-X, T-X-C]
$\therefore \quad \mathbf{T X}^{2}=\mathbf{T B} \cdot \mathbf{T C}$
19. Two triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$, lie on the same side of the base BC . From a point P on $B C, P Q| | A B$ and $P R|\mid B D$ are drawn. They intersect $A C$ at Q and $D C$ at R.
Prove that QR || AD.
[3 marks]

Proof:

In $\triangle C A B$,

seg PQ $\| \operatorname{seg} \mathrm{AB}$
$\therefore \quad \frac{\mathrm{CP}}{\mathrm{PB}}=\frac{\mathrm{CQ}}{\mathrm{AQ}}$
In $\triangle \mathrm{BCD}$,
seg PR || seg BD
$\therefore \quad \frac{\mathrm{CP}}{\mathrm{PB}}=\frac{\mathrm{CR}}{\mathrm{RD}}$
In $\triangle \mathrm{ACD}$,
$\therefore \quad \frac{\mathrm{CQ}}{\mathrm{AQ}}=\frac{\mathrm{CR}}{\mathrm{RD}}$
$\therefore \quad \operatorname{seg} Q R \| \operatorname{seg} A D$
---- [Given]
---- (ii) [By B.P.T.]
---- [From (i) and (ii)]
---- [By converse of B.P.T.]
20. In the figure, $\triangle \mathrm{ADB}$ and $\Delta \mathrm{CDB}$ are on the same base DB .

If $A C$ and $B D$ intersect at O, then prove that $\frac{A(\triangle A D B)}{A(\triangle C D B)}=\frac{A O}{C O}$
[3 marks]

Proof:

---- [Each is 90°]
---- [Vertically opposite angles]
$\therefore \quad \triangle \mathrm{ANO} \sim \Delta \mathrm{CMO} \quad----[B y \mathrm{~A}-\mathrm{A}$ test of similarity]
$\therefore \quad \frac{\mathrm{AN}}{\mathrm{CM}}=\frac{\mathrm{AO}}{\mathrm{CO}}$
$\therefore \quad \frac{\mathbf{A}(\triangle \mathrm{ADB})}{\mathbf{A}(\triangle \mathrm{CDB})}=\frac{\mathbf{A O}}{\mathbf{C O}}$
---- [From (i) and (ii)]
21. In $\triangle A B C, D$ is a point on $B C$ such that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove that $A D$ is the bisector of $\angle A$. (Hint: Produce BA to E such that AE = AC. Join EC)

Proof:

seg BA is produced to point E such that $\mathrm{AE}=\mathrm{AC}$ and seg EC is drawn.

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}} \\
& \mathrm{AC}=\mathrm{AE} \\
\therefore \quad & \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AE}}
\end{aligned}
$$

---- (i) [Given]
---- (ii) [By construction]
$\therefore \quad \operatorname{seg} \mathrm{AD} \| \operatorname{seg} \mathrm{EC}$
$\angle \mathrm{BAD} \cong \angle \mathrm{BEC}$
---- (iii) [Substituting (ii) in (i)]

> On transversal BE,
---- [By converse of B.P.T.]
$\therefore \quad \angle \mathrm{BAD} \cong \angle \mathrm{AEC}$
---- [Corresponding angles]

On transversal AC,
$\angle \mathrm{CAD} \cong \angle \mathrm{ACE}$
---- (v) [Alternate angles]
In $\triangle \mathrm{ACE}$,
$\operatorname{seg} \mathrm{AC} \cong \operatorname{seg} \mathrm{AE}$
---- [By construction]
$\angle \mathrm{AEC} \cong \angle \mathrm{ACE}$
---- (vi) [By isosceles triangle theorem]
$\therefore \quad \angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
---- [From (iv), (v) and (vi)]
$\therefore \quad$ Ray AD is the bisector of \angle BAC
22. The bisector of interior $\angle \mathrm{A}$ of $\triangle \mathrm{ABC}$ meets BC in D . The bisector of exterior $\angle A$ meets $B C$ produced in E. Prove that $\frac{\mathrm{BD}}{\mathrm{BE}}=\frac{\mathrm{CD}}{\mathrm{CE}}$.
(Hint : For the bisector of $\angle A$ which is exterior of $\triangle B A C, \frac{A B}{A C}=\frac{B E}{C E}$)

[5 marks]
Construction: Draw seg CP $\|$ seg AE meeting AB at point P .

Proof:

In $\triangle \mathrm{ABC}$,

Ray AD is bisector of $\angle \mathrm{BAC}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{CD}}$
---- [Given]
---- (i) [By property of angle bisector of triangle]

> In $\triangle \mathrm{ABE}$,
> seg CP || seg AE
> $\therefore \quad \frac{\mathrm{BC}}{\mathrm{CE}}=\frac{\mathrm{BP}}{\mathrm{AP}}$
> $\frac{\mathrm{BC}+\mathrm{CE}}{\mathrm{CE}}=\frac{\mathrm{BP}+\mathrm{AP}}{\mathrm{AP}}$
> $\therefore \quad \frac{\mathrm{BE}}{\mathrm{CE}}=\frac{\mathrm{AB}}{\mathrm{AP}}$
> seg CP $\|$ seg AE on transversal BF.
> $\angle \mathrm{FAE} \cong \angle \mathrm{APC}$
> seg CP || seg AE on transversal AC.
> $\angle \mathrm{CAE} \cong \angle \mathrm{ACP}$
> Also, $\angle \mathrm{FAE} \cong \angle \mathrm{CAE}$
> $\therefore \quad \angle \mathrm{APC} \cong \angle \mathrm{ACP}$
> In $\triangle \mathrm{APC}$,
> $\angle \mathrm{APC} \cong \angle \mathrm{ACP}$
> $\therefore \quad \mathrm{AP}=\mathrm{AC}$
> $\therefore \quad \frac{\mathrm{BE}}{\mathrm{CE}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
> $\therefore \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{CE}}$
> $\therefore \quad \frac{\mathrm{BD}}{\mathrm{BE}}=\frac{\mathrm{CD}}{\mathrm{CE}}$
> ---- [By construction]
> ---- [B. P. T]
> ---- [By componendo]
> ---- (ii)
> ---- (iii) [Corresponding angles]
> ---- (iv) [Alternate angles]
> ---- (v) [Seg AE bisects $\angle \mathrm{FAC}]$
> ---- (vi) [From (iii), (iv) and (v)]
> ---- [From (vi)]
> ---- (vii) [By converse of isosceles triangle theorem]
> ---- (viii) [From (ii) and (vii)]
> ---- [From (i) and (viii)]
> ---- [By alternendo]
23. In the adjoining figure, $\square \mathrm{ABCD}$ is a square. $\triangle \mathrm{BCE}$ on side BC and $\triangle A C F$ on the diagonal $A C$ are similar to each other. Then, show that $A(\triangle B C E)=\frac{1}{2} A(\triangle A C F)$.

Proof:

$\square \mathrm{ABCD}$ is a square.
$\therefore \quad \mathrm{AC}=\sqrt{2} \mathrm{BC}$
$\triangle \mathrm{BCE} \sim \triangle \mathrm{ACF}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{AC})^{2}}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{(\mathrm{BC})^{2}}{(\sqrt{2 .} \cdot \mathrm{BC})^{2}}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{\mathrm{BC}^{2}}{2 \mathrm{BC}^{2}}$
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{BCE})}{\mathrm{A}(\triangle \mathrm{ACF})}=\frac{1}{2}$
$\therefore \quad \mathrm{A}(\triangle \mathrm{BCE})=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{A}(\triangle \mathrm{ACF})$
[3 marks]
---- [Given]

---- (i) [\because Diagonal of a square $=\sqrt{2} \times$ side of square $]$
---- [Given]
---- (ii) [By theorem on areas of similar triangles]
---- [From (i) and (ii)]
24. Two poles of height ' a ' meters and ' b ' metres are ' p ' meters apart. Prove that the height ' h ' drawn from the point of intersection N of the lines joining the top of each pole to the foot of the opposite pole is $\frac{a b}{a+b}$ metres.
[4 marks]

Proof:

Let $\mathrm{RT}=x$ and $\mathrm{TQ}=y$.
In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{NTR}$,

$\angle \mathrm{PQR} \cong \angle \mathrm{NTR}$
---- [Each is 90°]
$\angle \mathrm{PRQ} \cong \angle \mathrm{NRT}$
---- [Common angle]
$\therefore \quad \Delta \mathrm{PQR} \sim \Delta \mathrm{NTR}$
$\therefore \quad \frac{\mathrm{PQ}}{\mathrm{NT}}=\frac{\mathrm{QR}}{\mathrm{TR}}$
$\therefore \quad \frac{\mathrm{a}}{\mathrm{h}}=\frac{\mathrm{p}}{x}$
$\therefore \quad x=\frac{\mathrm{ph}}{\mathrm{a}}$
In $\triangle \mathrm{SRQ}$ and $\triangle \mathrm{NTQ}$,
$\angle \mathrm{SRQ} \cong \angle \mathrm{NTQ}$
$\angle \mathrm{SQR} \cong \angle \mathrm{NQT}$
$\Delta \mathrm{SRQ} \sim \Delta \mathrm{NTQ}$
$\therefore \quad \frac{\mathrm{SR}}{\mathrm{NT}}=\frac{\mathrm{QR}}{\mathrm{QT}}$
$\therefore \quad \frac{\mathrm{b}}{\mathrm{h}}=\frac{\mathrm{p}}{y}$
$\therefore \quad y=\frac{\mathrm{ph}}{\mathrm{b}}$
$x+y=\frac{\mathrm{ph}}{\mathrm{a}}+\frac{\mathrm{ph}}{\mathrm{b}}$
$\therefore \quad \mathrm{p}=\mathrm{ph}\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right)$
$\therefore \quad \frac{\mathrm{p}}{\mathrm{ph}}=\frac{\mathrm{b}+\mathrm{a}}{\mathrm{ab}}$
$\therefore \quad \frac{1}{\mathrm{~h}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}$
$\therefore \quad \mathbf{h}=\frac{\mathbf{a b}}{\mathbf{a}+\mathbf{b}}$ metres
---- [By A - A test of similarity]
---- [c.s.s.t.]
---- [Substituting the given values]
---- [Each is 90°]
---- [Common angle]
---- [By A-A test of similarity]
---- [c.s.s.t]
---- [Substituting the given values]
---- [Adding (i) and (ii)]
---- $[R-T-Q]$
---- [By invertendo]
25. In the adjoining figure, $\triangle D E F G$ is a square and $\angle B A C=90^{\circ}$.

Prove that: i. $\Delta \mathrm{AGF} \sim \triangle \mathrm{DBG}$
iii. $\quad \triangle \mathrm{DBG} \sim \triangle \mathrm{EFC}$
ii. $\triangle \mathrm{AGF} \sim \triangle \mathrm{EFC}$
iv. $\quad \mathrm{DE}^{2}=\mathrm{BD} \cdot \mathrm{EC}$ [5 marks]

Proof:

i \quad DEFG is a square.
seg GF || seg DE
$\therefore \quad$ seg GF $\|$ seg BC
In $\triangle \mathrm{AGF}$ and $\triangle \mathrm{DBG}$,
$\angle \mathrm{GAF} \cong \angle \mathrm{BDG}$
$\angle \mathrm{AGF} \cong \angle \mathrm{DBG}$
$\therefore \quad \triangle \mathrm{AGF} \sim \triangle \mathrm{DBG}$
---- [Given]
---- [Opposite sides of a square]
---- (i) [B-D-E-C]
---- [Each is 90°]
---- (ii) [By A-A test of similarity]

---- [Corresponding angles of parallel lines GF and BC]
ii In $\triangle \mathrm{AGF}$ and $\triangle \mathrm{EFC}$,

$\angle \mathrm{GAF} \cong \angle \mathrm{FEC}$	$----\left[\right.$ Each is $\left.90^{\circ}\right]$
$\angle \mathrm{AFG} \cong \angle \mathrm{ECF}$	--- [Corresponding angles of parallel lines GF and BC$]$
\therefore	$\Delta \mathrm{AGF} \sim \Delta \mathbf{E F C}$

iii. Since, $\triangle \mathrm{AGF} \sim \Delta \mathrm{DBG}$
and $\triangle \mathrm{AGF} \sim \Delta \mathrm{EFC}$
---- [From (ii)]
---- [From (iii)]
$\therefore \quad \triangle \mathrm{DBG} \sim \triangle$ EFC
---- [From (ii) and (iii)]
iv. Since, $\triangle \mathrm{DBG} \sim \Delta \mathrm{EFC}$

$$
\begin{array}{ll}
& \frac{\mathrm{BD}}{\mathrm{FE}}=\frac{\mathrm{DG}}{\mathrm{EC}} \\
\therefore \quad & \mathrm{DG} \times \mathrm{FE}=\mathrm{BD} \times \mathrm{EC} \\
& \mathrm{But}, \quad \mathrm{DG}=\mathrm{EF}=\mathrm{DE} \\
\therefore \quad & \mathrm{DE} \times \mathrm{DE}=\mathrm{DB} \times \mathrm{EC} \\
\therefore \quad & \mathrm{DE}^{2}=\mathbf{B D} \cdot \mathbf{E C}
\end{array}
$$

One-Mark Questions

1. In $\triangle A B C$ and $\triangle X Y Z, \frac{A B}{Y Z}=\frac{B C}{Z X}=\frac{A C}{X Y}$, then state by which correspondence are $\triangle A B C$ and $\triangle X Y Z$ similar.

Solution:

$\Delta \mathrm{ABC} \sim \Delta \mathrm{XYZ}$ by $\mathrm{ABC} \leftrightarrow Y \mathrm{YZX}$.
2. In the figure, $R P: P K=3: 2$.

Find $\frac{A(\Delta T R P)}{A(\Delta T P K)}$.

Solution:

Ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases.
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{TRP})}{\mathrm{A}(\Delta \mathrm{TPK})}=\frac{\mathrm{RP}}{\mathrm{PK}}=\frac{\mathbf{3}}{\mathbf{2}}$
3. Write the statement of Basic Proportionality Theorem.

Solution:

If a line parallel to a side of a triangle intersects the other sides in two distinct points, then the line divides those sides in proportion.
4. What is the ratio among the length of the sides of any triangle of angles $30^{\circ}-60^{\circ}-90^{\circ}$?

Solution:

The ratio is $\mathbf{1}: \sqrt{\mathbf{3}}: \mathbf{2}$.
5. What is the ratio among the length of the sides of any triangle of angles $45^{\circ}-45^{\circ}-90^{\circ}$?

Solution:

The ratio is $\mathbf{1}: \mathbf{1}: \sqrt{\mathbf{2}}$.
6. State the test by which the given triangles are similar.

Solution:

$\Delta \mathrm{ABC} \sim \triangle \mathrm{EDC}$ by SAS test of similarity.
7. In the adjoining figure, find $\frac{A(\triangle P Q R)}{A(\triangle R S Q)}$.

Solution:

Ratio of the areas of two triangles having equal bases is equal to the ratio of their corresponding heights.
$\therefore \quad \frac{\mathrm{A}(\Delta \mathrm{PQR})}{\mathrm{A}(\Delta \mathrm{RSQ})}=\frac{\mathbf{P Q}}{\mathbf{S T}}$
8. Find the diagonal of a square whose side is 10 cm .
[Mar 15]

Solution:

Diagonal of a square $=\sqrt{2} \times$ side .

$$
=\sqrt{2} \times(10)=\mathbf{1 0} \sqrt{2} \mathbf{c m}
$$

9. Adjacent sides of parallelogram are 11 cm and 17 cm respectively. If length of one diagonal is 26 cm , then using which theorem/property can we find the length of the other diagonal?

Solution:

We can find the length of the other diagonal by using Apollonius' theorem.
10. In the adjoining figure, using given information, find BC.

Solution:

$$
\begin{aligned}
\mathrm{BC} & =\frac{\sqrt{3}}{2} \times \mathrm{AC} \quad---\left[\text { Side opposite to } 60^{\circ}\right] \\
& =\frac{\sqrt{3}}{2} \times 24 \\
\therefore \quad \mathbf{B C} & =\mathbf{1 2} \sqrt{\mathbf{3}} \text { units }
\end{aligned}
$$

11. Find the value of $M N$, so that $\mathbf{A}(\Delta \mathrm{ABC})=\mathbf{A}(\Delta L M N)$.

Solution:

$$
\begin{array}{ll}
& \mathrm{A}(\Delta \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{LMN}) \\
\therefore & \frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} \times \mathrm{MN} \times \mathrm{LP} \\
\therefore & \frac{1}{2} \times 5 \times 8=\frac{1}{2} \times \mathrm{MN} \times 4 \\
\therefore & \mathrm{MN}=\frac{5 \times 8}{4} \\
\therefore & \mathbf{M N}=10 \mathrm{~cm}
\end{array}
$$

12. If the sides of a triangle are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively, determine whether the triangle is right angled triangle or not.
[Mar 14]

Solution:

Note that,
$6^{2}+8^{2}=10^{2}$,
$\therefore \quad$ By converse of Pythagoras theorem, the given triangle is a right angled triangle.
13. Sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm . Determine whether the triangle is right-angled triangle or not.
[Oct 14]

Solution:

The longest side is 25 cm .
$\therefore \quad(25)^{2}=625$
Now, sum of the squares of the other two sides will be

$$
\begin{align*}
(7)^{2}+(24)^{2} & =49+576 \\
& =625 \tag{ii}
\end{align*}
$$

$\therefore \quad(25)^{2}=(7)^{2}+(24)^{2} \quad \ldots$. [From (i) and (ii)]
Yes, the given sides form a right angled triangle.
....[By converse of Pythagoras theorem]
14. In the following figure
$\operatorname{seg} \mathrm{AB} \perp \operatorname{seg} \mathrm{BC}$,
$\operatorname{seg} D C \perp \operatorname{seg} B C$.
If $\mathrm{AB}=2$ and $\mathrm{DC}=3$, find $\frac{A(\triangle A B C)}{A(\triangle D C B)}$.
[Mar 15]

Solution:

Ratio of the areas of two triangles having equal base is equal to the ratio of their corresponding heights.
$\therefore \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DCB})}=\frac{\mathrm{AB}}{\mathrm{DC}} \quad \therefore \quad \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{DCB})}=\frac{\mathbf{2}}{\mathbf{3}}$
15. Find the diagonal of a square whose side is 16 cm .
[July 15]

Solution:

Diagonal of a square $=\sqrt{2} \times$ side.

$$
=\sqrt{2} \times 16=16 \sqrt{2} \mathbf{c m}
$$

Additional Problems for Practice

Based on Exercise 1.1

1. In the adjoining figure, $\mathrm{QR}=12$ and $\mathrm{SR}=4$. Find values of
i. $\frac{\mathrm{A}(\triangle \mathrm{PSR})}{\mathrm{A}(\triangle \mathrm{PQR})}$
ii. $\frac{\mathrm{A}(\triangle \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{PQR})}$

iii. $\frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{PSR})}$
[3 marks]
2. The ratio of the areas of two triangles with the equal heights is $3: 4$. Base of the smaller triangle is 15 cm . Find the corresponding base of the larger triangle.
[2 marks]
3. In the adjoining figure, seg $\mathrm{AE} \perp$ seg BC and seg DF $\perp \operatorname{seg} \mathrm{BC}$.
Find
i. $\frac{\mathrm{A}(\Delta \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{DBC})}$
ii. $\frac{\mathrm{A}(\Delta \mathrm{DBF})}{\mathrm{A}(\Delta \mathrm{DFC})}$

iii. $\frac{\mathrm{A}(\triangle \mathrm{AEC})}{\mathrm{A}(\triangle \mathrm{DBF})}$
[2 marks]

Based on Exercise 1.2

4. In the adjoining figure, seg $\mathrm{EF} \|$ side AC , $\mathrm{AB}=18, \mathrm{AE}=10$, $B F=4$. Find $B C$.

5. In the adjoining figure, seg DE $\|$ side AC and $\operatorname{seg} \mathrm{DC} \|$ side AP.
Prove that $\frac{B E}{E C}=\frac{B C}{C P}$

[3 marks]
6. In the adjoining figure,
$\mathrm{PM}=10, \mathrm{MR}=8$,
$\mathrm{QN}=5, \mathrm{NR}=4$.
State with reason whether line MN is parallel to side PQ or not?

7. In the following figure, in a $\triangle \mathrm{PQR}$, seg RS is the bisector of $\angle \mathrm{PRQ}$, $\mathrm{PS}=6, \quad \mathrm{SQ}=8$, $P R=15$. Find $Q R$.

[Mar 15][2 marks]
8. Bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ in $\triangle \mathrm{ABC}$ meet each other at P . Line AP cuts the side BC at Q .
Then prove that $\frac{\mathrm{AP}}{\mathrm{PQ}}=\frac{\mathrm{AB}+\mathrm{AC}}{\mathrm{BC}}$. [3 marks]
9. In the figure given below Ray LS is the bisector of $\angle \mathrm{MLN}$, where $\operatorname{seg} \mathrm{ML} \cong \operatorname{seg} \mathrm{LN}$, find the relation between MS and
 SN.
[3 marks]
10. In the given figure, line $l \|$ side BC ,
$\mathrm{AP}=4, \mathrm{~PB}=8, \mathrm{AY}=5$ and $\mathrm{YC}=x$. Find x.

Based on Exercise 1.3

11. In the adjoining figure,
$\Delta \mathrm{MPL} \sim \Delta \mathrm{NQL}$, $M P=21, M L=35$, $\mathrm{NQ}=18, \mathrm{QL}=24$. Find PL and NL.

12. In the adjoining figure, $\triangle \mathrm{PQR}$ and $\Delta \mathrm{RST}$ are similar under $\mathrm{PQR} \leftrightarrow$ STR, $\mathrm{PQ}=12$, $P R=15$,
$\frac{\mathrm{QR}}{\mathrm{TR}}=\frac{3}{2}$. Find ST and SR.

[2 marks]
13. In the map of a triangular field, sides are shown by $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 6 cm . If the largest side of the triangular field is 400 m , find the remaining sides of the field.
[3 marks]
14. $\Delta \mathrm{EFG} \sim \Delta \mathrm{RST}$ and $\mathrm{EF}=8, \mathrm{FG}=10, \mathrm{EG}=6$, RS $=4$. Find $S T$ and RT.
[2 marks]
15. In $\square \mathrm{ABCD}$,
[Oct 09] [4 marks] side $B C \|$ side $A D$. Diagonals AC and BD intersect each other at P.

If $\mathrm{AP}=\frac{1}{3} \mathrm{AC}$, then
 prove that $\mathrm{DP}=\frac{1}{2} \mathrm{BP}$.

Based on Exercise 1.4

16. If $\triangle \mathrm{PQR} \sim \triangle \mathrm{PMN}$ and $9 \mathrm{~A}(\Delta \mathrm{PQR})=6 \mathrm{~A}(\Delta \mathrm{PMN})$, then find $\frac{\mathrm{QR}}{\mathrm{MN}}$.
[2 marks]
17. $\Delta \mathrm{LMN} \sim \Delta \mathrm{RST}$ and $\mathrm{A}(\Delta \mathrm{LMN})=100$ sq. cm , $A(\Delta R S T)=144 \mathrm{sq} . \mathrm{cm}, L M=5 \mathrm{~cm}$. Find RS.
[2 marks]
18. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are equilateral triangles. $\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{DEF})=1: 2$ and $\mathrm{AB}=4 \mathrm{~cm}$. Find DE.
[2 marks]
19. If the areas of two similar triangles are equal, then prove that they are congruent. [4 marks]
20. In the adjoining figure, seg DE $\|$ side AB , $\mathrm{DC}=2 \mathrm{BD}$, $\mathrm{A}(\triangle \mathrm{CDE})=20 \mathrm{~cm}^{2}$. Find $\mathrm{A}(\square \mathrm{ABDE})$.

Based on Exercise 1.5

21. In the adjoining figure,
$\angle \mathrm{PQR}=90^{\circ}$, $\operatorname{seg} \mathrm{QS} \perp$ side PR . Find values of x, y and z .

22. In the adjoining figure,
$\angle \mathrm{PRQ}=90^{\circ}$, $\operatorname{seg} \mathrm{RS} \perp \operatorname{seg} \mathrm{PQ}$. Prove that:
$\frac{\mathrm{PR}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{PS}}{\mathrm{QS}}$

[3 marks]
23. In the adjoining figure,
$\angle \mathrm{PQR}=90^{\circ}$, $\angle \mathrm{PSR}=90^{\circ}$.
Find:

i. $\quad \mathrm{PR}$ and ii. RS
[3 marks]
24. In the adjoining figure,
$\square \mathrm{ABCD}$ is a trapezium, seg $\mathrm{AB} \| \operatorname{seg} \mathrm{DC}$, seg $\mathrm{DE} \perp$ side AB , seg $\mathrm{CF} \perp$ side AB .

Find: i. DE and $C F$
ii. BF
iii. AB.
[5 marks]
25. Starting from Anil's house, Peter first goes 50 m to south, then 75 m to west, then 62 m to North and finally 40 m to east and reaches Salim's house. Then find the distance between Anil's house and Salim's house. [5 marks]

Based on Exercise 1.6

26. In the adjoining figure, $\angle \mathrm{S}=90^{\circ}, \angle \mathrm{T}=x^{\circ}$, $\angle \mathrm{R}=(x+30)^{\circ}$, $\mathrm{RT}=16$.
Find: i. RS

ii. ST
[3 marks]
27. $\triangle \mathrm{DEF}$ is an equilateral triangle. seg $\mathrm{DP} \perp$ side EF , and $\mathrm{E}-\mathrm{P}-\mathrm{F}$. Prove that: $\mathrm{DP}^{2}=3 \mathrm{EP}^{2}$

[Oct 08] [4 marks]
28. In the adjoining figure,
$\square \mathrm{PQRV}$ is a trapezium, seg PQ $\|$ seg VR.
$\mathrm{SR}=6, \mathrm{PQ}=9$, Find VR.

29. In the adjoining figure, $\triangle \mathrm{PQR}$ is an equilateral triangle, $\operatorname{seg} \mathrm{PM} \perp$ side QR . Prove that:
$\mathrm{PQ}^{2}=4 \mathrm{QM}^{2}$

Based on Exercise 1.7

30. In $\triangle P Q R$, seg PM is a median. $\mathrm{PM}=10$ and $P Q^{2}+P R^{2}=362$. Find $Q R$.
[2 marks]
31. Adjacent sides of a parallelogram are 11 cm and 17 cm . Its one diagonal is 12 cm . Find its other diagonal.
[4 marks]
32. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{AB}=12, \mathrm{BC}=16$ and seg BP is a median. Find BP. [3 marks]

Answers to additional problems for practice

1. i. $\frac{1}{3}$
ii. $\frac{2}{3} \quad$ iii. $\frac{2}{1}$
2. 20 cm
3.

i. $\frac{\mathrm{AE}}{\mathrm{DF}}$
ii. $\frac{\mathrm{BF}}{\mathrm{FC}}$
iii. $\frac{\mathrm{EC} \times \mathrm{AE}}{\mathrm{BF} \times \mathrm{DF}}$
4. 9 units
6. Yes, line $\mathrm{MN}|\mid$ side PQ
7. 20 units
9. $\operatorname{seg} \mathrm{MS} \cong \operatorname{seg} \mathrm{SN}$
10. 10 unit
11. $\mathrm{PL}=28$ units and $\mathrm{NL}=30$ units
12. $\mathrm{ST}=8$ units and $\mathrm{SR}=10$ units
13. Remaining sides of field are 350 m and 300 m .
14. $\mathrm{ST}=5$ units and $\mathrm{RT}=3$ units
16. $\frac{4}{3}$
17. 6 cm
18. $4 \sqrt{2} \mathrm{~cm}$
20. $25 \mathrm{~cm}^{2}$
21. $x=4 \sqrt{5}$ units, $y=12$ units and $z=6 \sqrt{5}$ units
23. i. 50 units ii. 14 units
24. i. $\mathrm{DE}=8$ units and $\mathrm{CF}=8$ units
ii. $\quad \mathrm{BF}=15$ units
iii. $\mathrm{AB}=28$ units
25. 37 m
26. i. 8 units
ii. $\quad 8 \sqrt{3}$ units
28. $\quad(15+6 \sqrt{3})$ units
30. 18 units
31. 26 cm
32. 10 units

