MODEL QUESTION PAPER 2 PUC II

II PUC Chemistry (34) Blue Print for Model Question Papers

Time : 3 Hrs. 15min.

Max. Marks: 70

Group	Unit	Title	Hours	Marks	Part-A I 10x1 mark	Part B II 8x2 mark	Part C III 8x3 mark	Part D IV & V 11x5 mark	Total
	1	The Solid state	8	7		√		√	7
0 T	2	Solution	9	8	$\checkmark\checkmark$			√	7
Group-I	3	Electrochemistry	9	8	√	1		√	8
Filysical	4	Chemical kinetics	9	8	√	1		√	8
	5	Surface chemistry	6	5	√			√	6
		Total of Group-I	41	36					36
0 1	6	General principles and processes of isolation of elements	5	4	√		v		4
Group-II	7	The p-block elements	11	10	√		V V		10
inorganic	8	The d and f-block elements	9	8		1	√√		8
	9	Coordination compounds	7	6			√√		6
		Total of Group-II	32	28					28
	10	Haloalkanes and haloarenes	7	6	√			√	6
	11	Alcohols, phenols and ethers	8	7		√		√	7
Croup III	12	Aldehydes, ketones and carboxylic acids	9	8	√	√		√	8
Organic	13	Amines	6	5				√	5
	14	Biomolecules	7	6	√			√	6
	15	Polymers	5	5				√	5
	16	Chemistry in everyday life	5	4		√ √			4
		Total of Group-III	47	41					41
		TOTAL	120	105	10	10	15	35	105

CHEMISTRY

Time: 3 hr-15 min.

Batch-02

Instructions:

i) The question paper has four parts, A, B, C and D. All parts are compulsory

ii) Part-A Carries 10 marks Part-B Carries 10 marks Part-C Carries 15 marks Part-D Carries 35 marks

iii) Write balanced equations and draw diagrams wherever required

(Use log tables and the simple commercial calculator if necessary (use of scientific calculator is not allowed)

Part-A

I. Answer all questions,

- 1. Define the term molality.
- 2. How does the enthalpy change during the formation of a non-ideal solution two liquids showing positive deviation from Raoult's law?
- 3. What is a primary electrochemical cell?
- 4. For the reaction $2NH_{3(g)} \xrightarrow{1130K/M_0} N_{2(g)} + 3H_{2(g)}$ what is the order?
- 5. What do you mean by selectivity of a catalyst?
- 6. Give the chemical composition of Copper matte.
- 7. Name the noble gas that is radioactive?
- 8. Write the general equation of the preparation of alkyl chlorides from alcohols using SOCl₂.
- 9. What are acetals?
- 10. Name the water insoluble component of the starch?

Part-B

II. Answer any five of the following each questions carries two marks 5 X 2=10

- An element having atomic mass 60 amu. has FCC unit cell. The edge length of the unit cell is 4x 10² pm. Find the density of the unit cell.
- 12. Write two applications of Kohlrausch law.
- 13. The half-life period of a certain reaction is directly proportional to initial concentration of the reactant. predict the order of the reaction and write the expression to calculate the half-life period of the reaction.
- 14. Give two consequences of lanthanoids contraction.
- 15. Complete the following reaction;

i) $CH_3CH_2OH \xrightarrow{Cu/300^0C} ?$

ii) $R - COOH \longrightarrow RCH_2OH$. Name the reagent used in the conversion?

- 16. How does ketone react with ethylene glycol. Write chemical equation for the reaction.
- 17. What are analgesics? Give an example for non-narcotic analgesics.
- 18. What are artificial sweeteners? Give an example.

Part-B

III. Answer any five of the following each questions carries three marks 5 X 3=15

10 X 1=10

Max Marks: 70

- 19. On the basis of Ellingham's diagram explain the principle of extraction of iron from its oxide ore.
- 20. Explain the principles involved in the manufacture of ammonia by Haber's process.

20. 21	Complete the following equations:	
21.	a) $5SO_2 + MnO_4^- + 2H_2O \longrightarrow 5SO_4^{2-} + 4H^+ + ?$	
	b) $5SO_3 + Conc.H_2SO_4 \longrightarrow ?$	1+1+1
	c) $2\text{KClO}_3 \xrightarrow{\text{MnO}_2} ?$	
22.	a) Explain the action of Conc. HCl on KMnO ₄ crystals	2
	b) Write the structure of perchloric acid.	1
23.	a) Transition metals show variable oxidation states. Explain	2
	b) Which metal of 3d-series exhibit maximum number of oxidation state?	1
24.	How is $K_2Cr_2O_7$ manufactured from chromite ore.	3
25.	Using valence bond theory (VBT), account for the geometry, type of hybridization of [NiCl ₄] ²⁻	tion and magnetic property 3
26.	Define linkage isomerism of co-ordination compounds. Give an example	3
	Part-D	
IV. A	nswer any three of the following, each question carries five marks	5 X 3=15
27.	a) Calculate the packing efficiency in BCC lattice	3
	b) Calculate the number of particles per unit cell in FCC	2
28.	a) Acetone boils at 56.38 $^{\circ}\text{C}$ and a solution of 1.41g of an organic compound	in 20 g of acetone boils at
	56.88°C. Calculate the molar mass of the organic compound (Given Kb for ace	tone =1.67 K kg/mol). 3
	b) what is reverse Osmosis, mention one important application of it.	2
29.	a) Standard EMF of the cell; Cu $cu^{2+}(1M) = Ag^{+}(1M) Ag^{+}$ is 0.46 V at	25 °C. Find the value of
	standard free energy change for the reaction that occurs in the cell.	3
	b) Draw the neat labeled diagram of SHE and write its symbolic representation.	2
30.	a) Derive the integrated rate equation for a zero order reaction	3
	b) Give any two differences between order and molecularity of reaction	2

31.	a) Write any two differences between lyophilic sols and lyophobic sols	2
	b) What are the differences between physisorption and chemisorption	2
	c) Give an example for homogeneous catalysis	1

V. Answer any four of the following, each question carries five marks 4 X 5=20

- 32. a) i) Name the organic product formed when chloroalkane is heated with concentrated solution of sodium iodide (NaI) in acetone?
 - ii) Write the chemical equation for the above reaction

iii) Name the above reaction	(1+1+1)
b) Explain Fittig's reaction with an equation	2

33. a) Organic compounds A, B and C are aliphatic saturated hydroxyl compounds when they react with Lucas reagent (anhyd.ZnCl₂ + conc. HCl), the following observations are made

i) Compound A gave turbidity immediately (1+1+1)

ii) Compound B gave turbidity after five minutes

iii) Compound C gave turbidity only on heating, Identify the type of compounds A, B and C.

	b) Complete the equation: $C_6H_5COOH + HOC_6H_5 \xrightarrow{H^+} ?$	1
34.	 c) Name the main organic product formed when anisole is reacted with HI a) Which of the following organic compound undergoes Cannizzaro's reaction? 1 i) CH₃CHO ii) HCHO 	1
	b) Write the mechanism of addition of HCN to a carbonyl compounds	2
	c) Explain the conversion of carboxylic acid into an acid amide. Give the general chemical	equation 2
35.	a) Explain Mendius reduction with an equation. b)When aniline is treated with HNO_2 at 273-278 K, benzene diazonium chloride is formed. V equation and name the reaction.	2 Write the 2
	c) What is Hinsberg's reagent?	
36.	a) Write the Haworth's structure of sucrose b) What are non-essential amino acids?	2 1
	c) Name the heterocyclic N-containing base present only in DNA but not in RNA.	1
	d) Vitamin-C cannot be stored in the body. Give reason. 1	
37.	a) Which among the following is a homopolymer and a co-polymer, i) Nylon-6,6 ii) PVC	2
	b) How is Buna-N prepared ?. Write the equation	2
	c) Give one example for a non-biodegradable polymer	

II -PUC Chemistry (34)

Scheme of Valuation for model question paper -2

Batch-02

	PART-A	
1.	No. of moles solute present in 1 kg of solvent	1
2.	Δ H= +Ve or Enthalpy increases or heat is absorbed	1
3.	A primary cell is one that cannot be recharged	1
4.	Zero	1
5.	It is the ability of catalyst to direct a reaction to yield a particular product	1
6.	Cu ₂ S + traces of FeS or Cuprous sulphide + traces of ferrous sulphide	1
7.	Radon	1
8. R-($OH + SOCI_2 \xrightarrow{\Delta} R-CI + SO_2 + HCI$	1
9.	Acetals are gem-alkoxy alkanes in which two alkoxy groups are present on the terminal carbon atom	1
10.	Amylopectin	1
<u>II.</u>	<u>PART-B</u>	

11. d = $\frac{ZM}{a^3 N_A}$

$$d = \frac{60 \times 4}{(400 \times 10^{-10})^3 \times 6.022 \times 10^{23}}$$

$$d = 6.226 \text{ g/cm}^3$$

	d = 6.226 g/cm ³	1
12.	i)The degree of dissociation and dissociation constant of weak electrolyte (AB) Type can be calculated	1
	ii) Using this law, Λ°_{m} for both weak and strong electrolytes can be calculated	1
13.	a) Zero order	1
	b) $t_{1/2} = [Ro]$	
	2K	

14. Due to lanthanide contraction i) Similarity in atomic sizes of elements of second and third transition series ii) The separation of lanthanides in pure state become difficult

15. i)
$$CH_3$$
- CH_2 - $OH \xrightarrow{Cu/300^{\circ}C} CH_3$ - $CHO + H_2$

ii) LiAlH₄ in the presence of THF

Ketal is formed, 16.

$$\overset{R}{\underset{R^{1}}{\overset{C}{\longrightarrow}}} = O + \overset{CH_{2}OH}{\underset{CH_{2}OH}{\overset{dry}{\longrightarrow}}} \overset{dry}{\underset{HCl}{\longrightarrow}} \overset{HCl}{\underset{R^{1}}{\overset{O}{\longrightarrow}}} O - \overset{CH_{2}}{\underset{R^{1}}{\overset{H}{\longrightarrow}}} + \overset{H_{2}O}{\underset{R^{1}}{\overset{H}{\longrightarrow}}}$$

17. Analgesics are the chemical substances which relieve body pains 1

1

1

1

1

1

ii)Sodium chromate in to sodium dichromate $2Na_2CrO_4 + H_2SO_4 \longrightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O$	
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
Na-Cr- Ω_{-} + 2KCl \longrightarrow K ₂ Cr ₂ Ω_{-} + 2 NaCl	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1
25. I) NI^{-1} ; [Ar] $3d^{-1}4s^{-1}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
3d ⁸ 4s 4p	
ii) On approach of Cl ⁻ ligands;	
SP ³ hybridization	1
iii) [NiCl ₄] ²⁻ formation;	
SP ⁵ hybrid orbitals filled by electrons donated by ligand	S 1
Geometry ; Due to SP hybridization, the complex has tetrahedral structure Magnetic property: The complex is paramagnetic due to the presence of two	1
unpaired electrons	-
26. Linkage isomerism is one in which two co-ordination compounds have the same	2
molecular composition but differ in the mode of attachment of ligands to the central	
metal atom/ion.	
Ex: [Co (NH ₃) ₅ (NO ₂)] Cl ₂ and [Co (NH ₃) ₅ (ONO)] Cl ₂	1
PART-D	
27. a) Edge length $a=4r/\sqrt{3}$ r = radius of sphere	1
Packing efficiency = (volume of the sphere x 2 ÷ volume of unit cell) x 100 = $(4/2 \pi r^3 x 2 \times 100) \div 2^3$	1
$= (4/3 \pi r^3 x 2 \times 100) \div 4r/\sqrt{3}$ = (4/3 \pi r^3 x 2 \times 100) \dots 4r/\/3	1
= 68%	-
b) No. of particles per unit cell of FCC	
$=\frac{1}{8}$ (No. of corner particles) + $\frac{1}{2}$ (No. of facial particles)	1
1 1	
$=\frac{1}{8} \times 8 + \frac{1}{2} \times 6 = 1 + 3 = 4$	1
28. a) $\Delta T_{b} = K_{b} x$ molality	
ΔT_{b} = K _b x (m solute/ M solute) x 1000 / m solvent	1
(56.88-56.38) = 1.67 x (1.41/ M solute) x 1000/20	1
M solute = 235.47	1
b) It is the process of movement of solvent molecules from higher concentration to	1
lower concentration by applying pressure greater than osmotic pressure	T
Application; It is used in desalination of sea water	1
29. a) $\Delta G^{\circ} = -nFE^{\circ}$ cell $n = 2$ = -2 x 96500 x 0.46 F = 96500 C, $E^{\circ} = 0.46$ V	
= -108080 joules or -108.08 kjoules	2
b) For diagram	1
SHE: Pt, H_2 (1 bar) / H^+ (1M)	
30. a) Consider a zero order reaction $R \rightarrow P$	

Rate = $K[R]^0$		
Rate = K x 1 where K- rate co	nstant or velocity constant	1
Rate = -d[R]/dt	,	
-d[R]/dt = K => d[R] = - K dt		
∫d [R] = - K∫ dt		
[R] = - Kt + I(1)		
I- integration constant		1
To find I, when t=0, $[R] = [R_0]$		
$[R_0] = -K \times 0 + I$		
$I = [R_0]$		
Substituting in eq (1)		
$[R] = -Kt + [R_0]$		
$K = [R_0] - [R]/t$		1
b) Molecularity	Order of a reaction	2
i)It isalways related to reaction	i) It may or may not related to reaction	
stoichiometry	stoichiometry	
ii) It isalways whole number	ii) It can be whole number or fraction or even zero	
31. a) Lyophilic sols	Lyophobic sols	2
i) Dispersed phase has greater	i) Dispersed phase has no	
affinity for dispersion medium	affinity for dispersion medium	
ii) Reversible	ii) irreversible	
or any other differences		
b) <u>Physisorption</u>	<u>Chemisorption</u>	
i) Adsorbate and adsorbent	i) Adsorbate and adsorbent	2
are held together by weak va	an der are held together by strong chemica	1
waals forces	bonds	
ii) Reversible	ii) irreversible	
or any two suitable o	differences	
NO	(g)	
$_{\rm c)} 2{\rm SO}_2({\rm g}) + {\rm O}_2({\rm g})$	\rightarrow 2SO ₃ (g)	1
or any other suitable example	les	-
32. a) i) lodoalkane is formed		1
Acetone		-
ii) R-Cl + Nal	→ R-I + NaCl	1
''' Finkelstein r	reaction	1
l inkeisten i	eaction	1
h) When haloarene is heated with so	odium metal in dry ether medium, higher	1
aromatic hydrocarbons is formed	and metal in ary effet meanin, inglief	-
$C_{H_{r}-X} + 2N_{a} + C_{H_{r}-X}$	CcHr-CcHr + 2NaX	1
Dry et	ther	-
33 , a) i) A = Tertiary alcohol		
B = Secondary alcohol		
C = Primary alcohol		1+1+1
	\mathbf{H}^+	
C _c H ₅ -COOH + HO-C _c H ₅ —	$\sim C_6H_5-COO-C_6H_5+H_2O$	
0 5	Dhanyl honzasta	
c) Phenol	Filenyi benzuate	1
		1
		T

35. a) Reduction of nitriles by sodium in alcohol to get a primary amine is called Mendius reduction.

$$R-CN + 4 (H) \xrightarrow{Na/alcohol} R-CH_2-NH_2$$
 1

1

1

b)

273-278K $C_6H_5-NH_2 + NaNO_2 + 2 HCl$ $C_6H_5-N_2Cl + NaCl + H_2O$ 1 Diazotization 1 c) Benzene sulphonyl chloride or $C_6H_5SO_2Cl$ 1 2

36.a)

b) A	b) Amino acids which can be synthesized by human body are called non-essential		1
amino a	acids		
c) T	hymine		1
d)	Excess of vitamin-C is excreted through urine		1
37. i)	Nylon-6,6 Copolymer		1
ii)	PVC Homopolymer	1	
b) When 1, 3-butadiene is heated with acrylonitrile in presence of sodium, Buna-N			

is formed.

$$H_{2}C = CH - CH_{H} = CH_{2} + H_{2}C = CH_{I} + H_{2}C = CH_{I} + H_{2}C + H_{2}C - CH_{I} + CH_{2}CH_{I} + CH_{2}CH_{2}CH_{I} + CH_{2}CH_{2}CH_{2}CH_{I$$

c) PVC or any suitable example